

Total energy $Q[J]$ transfered to a solid for time from 0 to t

$$
Q=\int_{0}^{t} q_{i n}(t) d t=\int_{0}^{t} h\left[T_{\infty}-T(t)\right] A_{s} e^{\frac{-h A_{i}}{\overline{\rho c_{p}} t}} d t=\rho c_{p} V\left(T_{\infty}-T_{0}\right)\left(1-e^{\frac{-h A_{s^{\prime}}}{\overline{\rho c_{p}} t}}\right)
$$

$$
Q=\rho c_{p} V\left(T_{\infty}-T_{0}\right)=m c_{p} \Delta T \quad \text { when } t \rightarrow \infty
$$

Time needed to heat
a solid from T_{0} to current temperature T

$$
t=\frac{\rho c_{p}}{h} \frac{V}{A_{s}} \ln \left(\frac{T_{\infty}-T_{0}}{T_{\infty}-T}\right)
$$

The lower is the time constant τ the faster is the heating of a solid

Plane Wall

$$
\begin{aligned}
A_{s} & =2 H W \\
V & =L H W \\
L_{c} & =\frac{L}{2} \\
B i & =\frac{h}{k} \frac{L}{2}
\end{aligned}
$$

Cylinder

$$
d=2 r
$$

$$
A_{s}=\pi d H=2 \pi r H
$$

$$
V=\frac{\pi d^{2}}{4} H=\pi r^{2} H
$$

$$
L_{c}=\frac{d}{4}=\frac{r}{2}
$$

$$
B i=\frac{h}{k} \frac{r}{2}
$$

Sphere

$$
\begin{aligned}
A_{s} & =\pi d^{2}=4 \pi r^{2} \\
V & =\frac{\pi d^{3}}{6}=\frac{4}{3} \pi r^{3} \\
L_{c} & =\frac{d}{6}=\frac{r}{3} \\
B i & =\frac{h}{k} \frac{r}{3}
\end{aligned}
$$

