

Explicit Method:

central-difference approximation:
forward-difference approximation:

$$
F o=\frac{\alpha \cdot \Delta t}{\Delta x^{2}}\left|\quad B i=\frac{h \cdot \Delta x}{k}\right| \quad \alpha=\left.\left.\frac{k}{\rho c_{p}} \quad \frac{\partial^{2} T}{\partial x^{2}}\right|_{m} ^{p} \quad \frac{T_{m-1}^{p}-2 T_{m}^{p}+T_{m+1}^{p}}{\Delta x^{2}} \quad \frac{\partial T}{\partial t}\right|_{m} ^{p} \approx \frac{T_{m}^{p+1}-T_{m}^{p}}{\Delta t}
$$

Interior Nodes (temperature at the next time level is calculated explicitly):

$$
\begin{equation*}
T_{m}^{p+1}=F o\left(T_{m+1}^{p}+T_{m-1}^{p}\right)+(1-2 F o) T_{m}^{p} \tag{5.78}
\end{equation*}
$$

stable for:

$$
F o \leq \frac{1}{2}
$$

(5.79)

Boundary Nodes:

$$
\begin{align*}
& T_{0}^{p+1}=2 F o\left(T_{l}^{p}+B i \cdot T_{\infty}\right)+(1-2 F o-2 B i F o) T_{0}^{p} \tag{5.82}\\
& T_{M}^{p+1}=2 F o\left(T_{M-1}^{p}+B i \cdot T_{\infty}\right)+(1-2 F o-2 B i F o) T_{M}^{p} \tag{5.82b}
\end{align*}
$$

stable for:

$$
F o \cdot(1+B i) \leq \frac{1}{2}
$$

(5.84)

Solution Procedure: \quad - Set initial temeperature distribution: $T_{m}^{0}=T\left(x_{m}, 0\right) \quad m=0,1,2, \ldots, M$

- Start the marching solution for $p=1,2, \ldots$:

