INTERNAL FLOW – THERMAL ANALYSIS

LAMINAR \(Re < 2300 \)

Entire fluid entrance region

Fully developed hydrodynamics

Entrance region

\(x_D = D \cdot 0.05 \cdot Re_p \)

\(T_0 = T_{in} \)

Fully developed thermally

\(x_D = x_D, x = 10 \cdot D \)

Thermodynamics:

Heat transfer by advection

\[q = \int \rho c_p T \, dx \]

\[q = \rho c_p T x \]

\[q = \rho c_p T x \]

Energy balance for entire pipe

\[\sum q_{conv} = q_{in} - q_{out} \]

\[q_{conv} = \frac{mc_p}{T_{in}} \]

Mean temperature distribution of fluid in a pipe:

\[T_u(x) = T_{in} + \frac{q_{conv}}{mc_p} x \]

Initial condition:

\[T_u(0) = T_{in} \]

Rate of heat transfer:

\[q_{conv} = q_x \cdot (P \cdot L) \]

Surface temperature:

\[T_x = T_u(x) + \frac{q_x}{h_l} = T_u(x) + \frac{T_x - T_u(x)}{h_l} \]

Heat Transfer Equation for \(T_u \)

\[\frac{dT_u}{dx} = \frac{q_x}{mc_p} \]

Overall Heat Transfer

\[\frac{dT_u}{dx} = \frac{U_l (x) P}{mc_p} \]

\[\frac{dT_u}{dx} = \frac{U_l (x) P}{mc_p} \]

Circular pipe

\[T_u = \frac{1}{U_l (x) P} \]

Overall convective coefficient:

\[\frac{1}{U_l (x)} = \frac{r_2}{r_1} \frac{r_2}{r_1} \]

\[T_u \text{ is } \text{ given instead of } T \text{ in } (8.42) \]

replace \(T \) by \(T_v \)

replace \(T \) by \(T_u \)