
$R e_{D}=\frac{u_{m} D}{v}=\frac{\rho u_{m} D}{\mu}=\frac{4 \dot{m}}{\mu \pi D}$





| $T_{s}=$ const $\quad \frac{d T_{m}}{d x}=\frac{h_{x} P}{\dot{m} c_{p}}\left[T_{s}-T_{m}(x)\right]$ | $T_{\infty}=$ const $\quad \frac{d T_{m}}{d x}=\frac{U_{l}(x) P_{1}}{\dot{m} c_{p}}\left[T_{s}-T_{m}(x)\right]$ |
| :---: | :---: |
| $T_{m}(x)=T_{s}+\left(T_{m, i}-T_{s}\right) e^{-\frac{\bar{h}_{s} P}{m c_{p}} x}$ | $T_{m}(x)=T_{\infty}+\left(T_{m, i}-T_{\infty}\right) e^{-\frac{\bar{U}_{l}(x) P_{1}}{\dot{m} c_{p}} x}$ |
| $q_{c o n v}=\bar{h} \cdot(P \cdot L) \Delta T_{l m}$ | $q_{c o n v}=\bar{U}_{l} \cdot\left(P_{l} \cdot L\right) \Delta T_{l m} \quad \begin{aligned} & \Delta T_{o}=T_{\infty}-T_{m, o} \\ & \Delta T_{i}=T_{\infty}-T_{m, i}\end{aligned}$ |
|  | $T_{\infty}$ is given instead of $T_{s}$ in (8.42) replace $\bar{h}$ by $\bar{U}_{1}$ replace $T_{s}$ by $T_{\infty}$ <br> overall convective coefficient $\bar{U}_{1}=\frac{1}{\frac{1}{\bar{h}_{1}}+\frac{r_{1}}{k} \ln \frac{r_{2}}{r_{1}}+\frac{r_{1}}{r_{2}} \frac{1}{\bar{h}_{2}}} \approx \frac{1}{\frac{1}{\bar{h}_{1}}+\frac{1}{\bar{h}_{2}}}$ |

