VIII.3 Method of Separation of Variables –

Transient Initial-Boundary Value Problems

VIII.3.1 Heat equation in Plane Wall – 1-D
VIII.3.2 Heat Equations in Cartesian Coordinates 2-D and 3-D
VIII.3.3 Heat equation in Cylindrical Coordinates
VIII.3.4 Heat equation in Spherical Coordinates
VIII.3.5 Wave Equation
VIII.3.6 Singular Sturm-Liouville Problem
VIII.3.7 Review Questions, Examples and Exercises
VIII.3.1 HEAT EQUATION IN PLANE WALL – 1-D Heat Equation

VIII.3.1.1 Basic Case: Homogeneous Equation, Homogeneous Boundary Conditions

1) Separation of variables:

\[u(x,t) = X(x)T(t) \]

Boundary conditions:
\[[u]_{x=0} = [X]_{x=0} T(t) = 0 \quad \Rightarrow \quad [X]_{x=0} = 0 \]
\[[u]_{x=L} = [X]_{x=L} T(t) = 0 \quad \Rightarrow \quad [X]_{x=L} = 0 \]

\[\frac{X''}{X} = \frac{1}{\alpha T} = \mu \]

2) Sturm-Liouville Problem:

\[X'' - \mu X = 0 \]
\[[X]_{x=0} = 0 \quad \Rightarrow \quad \mu = -\lambda_n^2 \quad n = 1, 2, \ldots \]
\[[X]_{x=L} = 0 \quad X_n(x) \]

3) Equation for \(T \):

\[T' - \alpha \mu T = 0 \]
\[T' + \alpha \lambda_n^2 T = 0 \quad \Rightarrow \quad T_n(t) = e^{-\lambda_n^2 t} \]

4) Solution:

\[u(x,t) = \sum_{n=1}^{\infty} a_n X_n(t) = \sum_{n=1}^{\infty} a_n X_n e^{-\lambda_n^2 t} \]

Initial condition:

\[u(x,0) = u_0(x) = \sum_{n=1}^{\infty} a_n X_n \quad \Rightarrow \quad a_n = \frac{\int_0^L u_0(x) X_n(x) \, dx}{\int_0^L X_n^2(x) \, dx} \]
Example 1

Neumann-Neumann Problem

\[
\frac{\partial^2 u}{\partial x^2} + \alpha \frac{\partial u}{\partial t} = 0 \quad u(x,t) : \quad x \in (0,L) \quad t > 0
\]

Initial condition:

\[u(x,0) = u_0(x)\]

Boundary conditions:

\[
\begin{align*}
\left[\frac{\partial u}{\partial x} \right]_{x=0} &= 0 \quad t > 0 \quad \text{(Neumann)} \\
\left[\frac{\partial u}{\partial x} \right]_{x=L} &= 0 \quad t > 0 \quad \text{(Neumann)}
\end{align*}
\]

(both boundaries are insulated)

Separation of variables:

\[u(x,t) = X(x)T(t)\]

Boundary conditions:

\[
\begin{align*}
x = 0 \quad &\frac{\partial u(0,t)}{\partial x} = X'(0)T(t) = 0 \quad \Rightarrow \quad X'(0) = 0 \\
x = L \quad &\frac{\partial u(L,t)}{\partial x} = X'(L)T(t) = 0 \quad \Rightarrow \quad X'(L) = 0
\end{align*}
\]

Solution of SLP:

\[
X'' - \mu X = 0 \quad \mu_n = -\lambda_n^2
\]

\[
\begin{align*}
\lambda_0 &= 0 \quad X_0 = 1 \\
\lambda_n &= \frac{n\pi}{L} \quad X_n = \cos\left(\frac{n\pi}{L}x\right) \quad n = 1,2,\ldots
\end{align*}
\]

Solution for \(T\):

\[
T' + \alpha \lambda_n^2 T = 0 \quad T_n(t) = e^{-\alpha \lambda_n^2 t}
\]

\[
T'(t) + \alpha \cdot 0 \cdot T = 0 \quad T_0(t) = 1
\]

Solution:

\[
u(x,t) = a_0 X_0 T_0 + \sum_{n=1}^{\infty} a_n X_n T_n = a_0 + \sum_{n=1}^{\infty} a_n X_n e^{-\alpha \lambda_n^2 t}
\]

\[
a_0 = \frac{1}{L} \int_0^L u_0(x) \, dx
\]

\[
a_n = \frac{2}{L} \int_0^L u_0(x) \cos\left(\frac{n\pi}{L}x\right) \, dx
\]

Solution of IBVP:

\[
u(x,t) = \frac{1}{L} \int_0^L u_0(x) \, dx + \sum_{n=1}^{\infty} \left[\frac{2}{L} \int_0^L u_0(x) \cos\left(\frac{n\pi}{L}x\right) \, dx \right] \cos\left(\frac{n\pi}{L}x\right) e^{-\alpha \lambda_n^2 t}
\]
Particular case:

\[u_0(x) = 100 + 10000 \left(x - \frac{L}{3} \right)^2 \left[^\circ C \right], \quad \frac{L}{\alpha} = 500 \left[\frac{s}{m} \right] \text{(steel)}, \quad L=0.1m \]

Comments:

1) The solution is in the form of an infinite series.
 If the initial temperature distribution given by the function \(u_0(x) \) is integrable, then the Fourier series is absolutely convergent and the function \(u(x,t) \) satisfies the Heat Equation and initial and boundary conditions.
 Therefore, it is an analytical solution of the given IBVP.

2) With the increase of time, the solution approaches the steady state (the averaged temperature in the slab). Boundaries are insulated, and there are no heat sources. As a result, no heat escapes into the surroundings. The driving force – temperature gradient – is directed toward the areas with lower temperature. There exists a process of redistribution of heat energy that produces the uniform temperature in the slab.

3) Basic functions consist of the product

\[u_n(x,t) = \cos \left(\frac{n\pi}{L} x \right) e^{-\frac{n^2\pi^2}{\alpha} t} = \cos \left(\frac{n\pi}{L} x \right) e^{-\frac{(n\pi t)}{L^2}} \]

where the cosine function provides the spatial shape of the temperature profile; and the exponential function is responsible for decay of the temperature profile in time.

4) The rate of change of temperature depends on the thermal diffusivity \(\alpha \).

5) Very often, a 1-D Heat Equation is treated as a model for heat transfer in a long very thin rod of constant cross-section whose surface, except for the ends, is insulated against the flow of heat. Although, it is formally a correct model, the practical application of it is very limited. But there is another interpretation of a 1-D model, which is more reliable.

Consider a 3-D wall with finite dimension in the x-direction (within \(x = 0 \) and \(x = L \)) and elongated dimensions (may be infinite) in y- and z-directions. If the conditions at the walls \(x = 0 \) and \(x = L \) are uniform, and the initial condition is independent of variables \(y \) and \(z \), then the variation of temperature in the y- and z-directions is negligible (no heat flux in these directions)

\[\frac{\partial u}{\partial y} = \frac{\partial u}{\partial z} = 0 \]

and the heat equation becomes 1-D

\[\frac{\partial^2 u}{\partial x^2} = \frac{1}{\alpha} \frac{\partial u}{\partial t} \]

It defines the variation of temperature along any line perpendicular to the wall.
Example 2

Dirichlet-Robin Problem

\[
\frac{\partial^2 u}{\partial x^2} + \frac{\partial u}{\partial t} = 0 \quad x \in (0, L), \quad t > 0
\]

Initial condition: \(u(x, 0) = u_0(x) \)

Boundary conditions:
- \(u_x(0) = 0 \) (Dirichlet)
- \(\left[\frac{\partial u}{\partial x} + Hu \right]_{x=L} = 0 \) (Robin) \(H = \frac{h}{k} \)

Separation of variables:

\[
u(x, t) = X(x)T(t)
\]

\[
X'' - \mu X = 0 \quad T' - \alpha \mu T = 0
\]

Boundary conditions:
- \(x = 0 \) \(X(0)T(0) = 0 \) \(\Rightarrow X(0) = 0 \)
- \(x = L \) \(X'(L)T'(L) + HX(L)T(L) = 0 \) \(\Rightarrow X'(L) + HX(L) = 0 \)

Solution of Sturm-Liouville problem:

\[
\mu_n = -\lambda_n^2
\]

\[
X_n = \sin(\lambda_n x) \quad n = 1, 2, ...
\]

where eigenvalues \(\lambda_n \) are positive roots of the characteristic equation:

\[
\lambda_n \cos \lambda_n L + H \sin \lambda_n L = 0
\]

Solution for \(T(t) \):

With determined eigenvalues, the solution for \(T \) becomes:

\[
T_n(t) = e^{-\lambda_n^2 t}
\]

\[
\textbf{Solution:}
\]

\[
u(x, t) = \sum_{n=1}^{\infty} a_n \sin(\lambda_n x) e^{-\lambda_n^2 t}
\]

This solution satisfies the heat equation and boundary conditions. We want to define coefficients \(a_n \) in such a way that the obtained solution satisfies also the initial condition at \(t = 0 \):

\[
u(x, 0) = \sum_{n=1}^{\infty} a_n \sin(\lambda_n x) = u_0(x)
\]
In our problem, functions \(\{X_n(x) = \sin(\lambda_n x)\} \) are obtained as eigenfunctions of the Sturm-Liouville problem for the equation \(X'' + \lambda^2 X = 0 \); therefore, the set of all eigenfunctions is a complete system of functions orthogonal with respect to the weight function \(p = 1 \). Then, the last equation is an expansion of the function \(u_0(x) \) in a generalized Fourier series over the interval \((0, L)\) with coefficients defined by

\[
a_n = \frac{\int_0^L u_0(x) \sin(\lambda_n x) \, dx}{\int_0^L \sin^2(\lambda_n x) \, dx}
\]

Then, the solution of the initial-boundary value problem is given by

\[
u(x,t) = \sum_{n=1}^{\infty} \left[\frac{\int_0^L u_0(x) \sin(\lambda_n x) \, dx}{\int_0^L \sin^2(\lambda_n x) \, dx} \right] \sin(\lambda_n x) e^{-\alpha_n^2 t}
\]

where the squared norm of eigenfunctions may be evaluated after integration as

\[
\|X_n\|^2 = \int_0^L \sin^2(\lambda_n x) \, dx = \frac{L}{2} - \frac{\sin(2\lambda_n L)}{4\lambda_n}
\]

Finally, the solution is:

\[
u(x,t) = \sum_{n=1}^{\infty} \left[\frac{\int_0^L u_0(x) \sin(\lambda_n x) \, dx}{\frac{L}{2} - \frac{\sin(2\lambda_n L)}{4\lambda_n}} \right] \sin(\lambda_n x) e^{-\alpha_n^2 t}
\]
MAPLE:
Let $L = 2$, $H = 3$, $u_0(x) = x(2-x)$, $\alpha = 0.0625$

\begin{verbatim}
> restart;
> with(plots):
> L:=2; H:=3; A:=0.0625;
 L := 2
 H := 3
 A := 0.0625

Characteristic equation:
> w(x):=x*cos(x*L)+H*sin(x*L);
 w(x) := x cos(2 x) + 3 sin(2 x)
> plot(w(x),x=0..10);

Eigenvalues:
> n:=1: for m from 1 to 500 do z:=fsolve(w(x)=0,x=m/10..(m+1)/10):
 if type(z,float) then lambda[n]:=z: n:=n+1 fi od:
> for i to 5 do lambda[i] od;
 1.358229874
 2.768911636
 4.235147453
 5.738636645
 7.264403196

> N:=n-1;
 N := 32
> n:='n'; i:='i';

Eigenfunctions:
> X[n]:=sin(lambda[n]*x);
 X_n := sin(\lambda_n x)
Squared-norm:
> NX[n]:=int(X[n]^2,x=0..L);
 NX_n := (1/2) -cos(2 \lambda_n) sin(2 \lambda_n) + 2 \lambda_n

Initial condition:
> u0(x):=x*(L-x)+1;
 u0(x) := x(2-x) + 1

Fourier coefficients:
> a[n]:=simplify(int(u0(x)*X[n],x=0..L)/NX[n]);
 a_n := -2 (2 \lambda_n sin(2 \lambda_n) + \lambda_n^2 cos(2 \lambda_n) + 2 cos(2 \lambda_n) - 2 \lambda_n^2) /
 \lambda_n^2 (-cos(2 \lambda_n) sin(2 \lambda_n) + 2 \lambda_n)
\end{verbatim}
Solution - Generalized Fourier series:

\[
\begin{align*}
&> u(x,t) := \sum_{n=1}^{N} a[n] X[n] \exp(-\lambda[n]^2 t/A^2), \quad n=1..N) \\
&> \text{plot3d}(u(x,t), x=0..L, t=0..30, \text{axes=boxed}, \text{style=wireframe}); \\
&> \text{animate}([u0(x), u(x,t)], x=0..L, t=0..50, \text{frames=200}, \text{axes=boxed}) \\
&> u(x,0) := \text{subs}(t=0, u(x,t)) \\
&> u(x,1) := \text{subs}(t=1, u(x,t)) \\
&> u(x,5) := \text{subs}(t=5, u(x,t)) \\
&> u(x,10) := \text{subs}(t=10, u(x,t)) \\
&> u(x,20) := \text{subs}(t=20, u(x,t)) \\
&> \text{plot}([u0(x), u(x,0), u(x,1), u(x,5), u(x,10), u(x,20)], x=0..L);
\end{align*}
\]
VIII.3.1.2 GENERAL CASE

Non-Homogeneous Equation, Non-Homogeneous Boundary Conditions

\[
\frac{\partial^2 u}{\partial x^2} + F(x) = \frac{1}{\alpha} \frac{\partial u}{\partial t} \quad u(x,t), \quad x \in (0,L), \quad t > 0
\]

Initial condition:
\[u(x,0) = u_0(x)\]

Boundary conditions:
\[u\left|_{x=a} = g_1, \quad t > 0 \right. \quad (I, II \text{ or IIIrd kind})\]
\[u\left|_{x=L} = g_2, \quad t > 0 \right. \quad (I, II \text{ or IIIrd kind})\]

I Steady State Solution

Definition

A time-independent function which satisfies the heat equation and boundary conditions obtained as

\[u_s(x) = \lim_{t \to \infty} u(x,t)\]

is called a steady state solution

Substitution of a time-independent function into the heat equation leads to the following ordinary differential equation:

\[\frac{\partial^2 u_s}{\partial x^2} + F(x) = 0 \quad u_s(x), \quad x \in (0,L)\]

subject to the boundary conditions of the same kind as for PDE:

\[u_s\left|_{x=0} = g_1, \quad t > 0 \right. \quad (I, II \text{ or IIIrd kind})\]
\[u_s\left|_{x=L} = g_2, \quad t > 0 \right. \quad (I, II \text{ or IIIrd kind})\]

General solution of ODE:

\[u_s(x) = -\int \int F(x)\,dx\,dx + c_1x + c_2\]

Solutions of BVPs for plane wall with uniform heat generation are provided by the Table.

II Transient Solution:

Define the transient solution by equation:

\[U(x,t) = u(x,t) - u_s(x)\]

then solution of the original problem is a sum of transient solution and steady state solution:

\[u(x,t) = U(x,t) + u_s(x)\]

Substitute it into the Heat Equation:

\[\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 u_s}{\partial x^2} + F(x) = \frac{1}{\alpha} \frac{\partial U}{\partial t}\]

Since \[\frac{\partial^2 u_s}{\partial x^2} + F(x) = 0\], it yields

\[\frac{\partial^2 U}{\partial x^2} = a \frac{\partial U}{\partial t}\]
We obtained the equation for the new unknown function $U(x,t)$ which has homogeneous boundary conditions:

\[
x = 0 \quad [U]_{x=0} = [u]_{x=0} - [u_s]_{x=0} = g_1 - g_t = 0
\]

\[
x = L \quad [U]_{x=L} = [u]_{x=L} - [u_s]_{x=L} = g_2 - g_t = 0
\]

As a result, we reduced the non-homogeneous problem to a homogeneous equation for $U(x,t)$ with homogeneous boundary conditions. Initial condition for function $U(x,t)$:

\[
U(x,0) = u(x,0) - u_s(x) = u_0(x) - u_s(x)
\]

Solution for $U(x,t)$

We consider the following basic initial boundary value problem:

\[
\frac{\partial^2 U}{\partial x^2} = \frac{1}{\alpha} \frac{\partial U}{\partial t}, \quad U(x,t), \; x \in (0,L), \; t > 0
\]

Initial condition:

\[
U(x,0) = u_0(x) - u_s(x)
\]

Boundary conditions:

\[
[U]_{x=0} = 0, \; t > 0
\]

\[
[U]_{x=L} = 0, \; t > 0
\]

We already know a solution of this basic problem obtained by separation of variables:

\[
U(x,t) = \sum_{n=1}^{\infty} a_n X_n e^{-\alpha \xi^2 t}
\]

where coefficients a_n are the Fourier coefficients determined with the corresponding initial condition for the function $U(x,t)$:

\[
a_n = \frac{\int_0^L \left[u_0(x) - u_s(x) \right] X_n(x) \, dx}{\int_0^L X_n^2(x) \, dx}
\]

III Solution of IBVP:

Solution of the original IBVP is a sum of steady state solution and transient solution:

\[
U(x,t) = u_s(x) + U(x,t)
\]

\[
= u_s(x) + \sum_{n=1}^{\infty} a_n X_n e^{-\alpha \xi^2 t}
\]

\[
a_n = \frac{\int_0^L \left[u_0(x) - u_s(x) \right] X_n(x) \, dx}{\int_0^L X_n^2(x) \, dx}
\]
Example 3

Dirichlet-Dirichlet problem with a uniform heat generation:

\[
\frac{\partial^2 u}{\partial x^2} + F = \frac{l}{\alpha} \frac{\partial u}{\partial t} \quad \text{u}(x,t): \ x \in (0,L), \ t > 0
\]

Initial condition: \(u(x,0) = u_0(x) \)

Boundary conditions: \(u(0,t) = g_1, \ t > 0 \) (Dirichlet)
\(u(L,t) = g_2, \ t > 0 \) (Dirichlet)

1) Steady State Solution:

Let \(F = \text{const} \), then integrating the equation twice, we come up with the following solution:

\[
\frac{\partial u_s}{\partial x} = -Fx + c_i
\]

\[
u_s = -\frac{F}{2}x^2 + c_1x + c_2
\]

Apply boundary conditions to determine the constants of integration:

\[
x = 0 \quad \Rightarrow \quad c_2 = g_1
\]
\[
x = L \quad \Rightarrow \quad -\frac{F}{2}L^2 + c_1L + g_1 = g_2
\]
\[
\Rightarrow \quad c_1 = \frac{g_2 - g_1}{L} + \frac{FL}{2}
\]

\[
u_s(x) = -\frac{F}{2}x^2 + \left(\frac{g_2 - g_1}{L} + \frac{FL}{2}\right)x + g_1
\]

Example: \(F = 2, \ g_1 = 1, \ g_2 = 2, \ L = 2 \)

![Graph of steady state solution]

2) Transient Problem:

\[
\frac{\partial^2 U}{\partial x^2} = \frac{l}{\alpha} \frac{\partial U}{\partial t} \quad \text{U}(x,t): \ x \in (0,L), \ t > 0
\]

initial condition: \(U(x,0) = u_0(x) - u_s(x) \)

boundary conditions: \(U(0,t) = 0 \) (Dirichlet)
\(U(L,t) = 0 \) (Dirichlet)
Solution of this basic problem (Dirichlet-Dirichlet) obtained by separation of variables:

\[\lambda_n = \frac{n\pi}{L}, \quad X_n(x) = \sin\left(\frac{n\pi}{L}x\right) \]

\[U(x,t) = \sum_{n=1}^{\infty} a_n X_n e^{-\alpha_n^2 t/L} = \sum_{n=1}^{\infty} a_n \sin\left(\frac{n\pi}{L}x\right) e^{-\alpha_n^2 x^2/L} \]

where coefficients \(a_n \) are the Fourier coefficients determined by the corresponding initial condition for the function \(U(x,t) \):

\[a_n = \frac{1}{L} \int_0^L [u_0(x) - u_s(x)] X_n(x) dx = \frac{2}{L} \int_0^L [u_0(x) - u_s(x)] \sin\left(\frac{n\pi}{L}x\right) dx \]

3) Solution of IBVP:

Return to the original function \(u(x,t) \):

\[u(x,t) = U(x,t) + u_s(x) = u_s(x) + \sum_{n=1}^{\infty} a_n \sin\left(\frac{n\pi}{L}x\right) e^{-\alpha_n^2 x^2/L} \]

Then the solution of the non-homogeneous heat equation with non-homogeneous Dirichlet boundary conditions becomes:

\[u(x,t) = \left[-\frac{F}{2} x^2 + \left(\frac{g_2 - g_1}{L} + \frac{FL}{2}\right)x + g_1 \right] + \sum_{n=1}^{\infty} \left[\int_0^L [u_0(x) - u_s(x)] \sin\left(\frac{n\pi}{L}x\right) dx \right] \sin\left(\frac{n\pi}{L}x\right) e^{-\alpha_n^2 x^2/L} \]

Remark: In practice, instead of the exact solution defined by the infinite series, the truncated series is used for calculation of the approximate solution. How many terms are needed in the truncated series for the accurate approximation? Comparison of the exact solution (which is also a truncated series but with a very large number of terms, which we assume, provides an accurate result) with the calculation with a small number of terms in a truncated series shows that the accuracy depends on time: the further we proceed in time, the more accurate becomes an approximate solution (why?). For uniform characterization of physical processes, the non-dimensional parameters are used in engineering. In heat transfer, non-dimensional time is defined by the Fourier number:

\[Fo = \frac{\alpha t}{L^2} \]

where \(\alpha \) is the thermal diffusivity.

In engineering heat transfer analysis, a 4 term approximation is considered as an accurate approximation for all values of the Fourier number. For simplicity, very often even a 1 term approximation is used, which is considered to be accurate for \(Fo > 0.2 \) (error in most cases does not exceed 1%, and this is a convention in engineering heat transfer).
Consider comparison of the exact solution (100 terms) with 1 and 4 terms approximations.

Results are calculated for:

\[Fo = 0.0 \]
\[Fo = 0.05 \]
\[Fo = 0.2 \]
\[Fo = 0.4 \]

The lowest curve is a steady state solution.

As can be seen from the figure, for \(Fo > 0.2 \), all results coincide.

\[Fo > 0.2 \] is generally adopted [see Incroper and De Witt] as a condition for application one term approximation:

one-term solution becomes accurate for \(Fo > 0.2 \).
\[\rho c \frac{\partial T}{\partial t} = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) \]

\[f(x) \quad \text{\(\frac{\partial T}{\partial y} = 0 \)} \]

\[\frac{\partial T}{\partial x} = 0 \quad \text{\(\frac{\partial T}{\partial y} = 0 \)} \]

\[\frac{\partial T}{\partial x} = 0 \quad \text{\(\frac{\partial T}{\partial x} = 0 \)} \]

\[g'' = c_{\text{const}} \]

\[\text{F.D.} \quad \frac{\partial \Theta}{\partial t} = 0 \]

\[\Theta = \frac{T-T_m}{g''k/\rho} \]
VIII.3.2.1 HEAT EQUATION in CARTESIAN COORDINATES 2-D

General Problem:

\[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + F(x, y) = \frac{l}{\alpha} \frac{\partial u}{\partial t} \quad u(x, y, t): \quad (x, y) \in (0, L) \times (0, M) \]

Initial Condition:

\[u(x, y, 0) = u_0(x, y) \quad (x, y) \in [0, L] \times [0, M] \]

Boundary Conditions:

\[
\begin{align*}
 x &= 0 \quad [u]_{x=0} = f_1(y) & \quad y \in (0, M) & \quad t > 0 \\
 x &= L \quad [u]_{x=L} = f_3(y) & \quad y \in (0, M) & \quad t > 0 \\
 y &= 0 \quad [u]_{y=0} = f_1(x) & \quad x \in (0, L) & \quad t > 0 \\
 y &= M \quad [u]_{y=M} = f_2(x) & \quad x \in (0, L) & \quad t > 0
\end{align*}
\]

1. Steady State Solution

Find time-independent solution \(u_s(x, y) \). We are looking for a steady state solution which satisfies the differential equation:

\[\frac{\partial^2 u_s}{\partial x^2} + \frac{\partial^2 u_s}{\partial y^2} + F(x, y) = 0 \]

and the boundary conditions of the same type as in the general problem

\[
\begin{align*}
 x &= 0 \quad [u_s]_{x=0} = f_3(y) & \quad y \in (0, M) & \quad t > 0 \\
 x &= L \quad [u_s]_{x=L} = f_3(y) & \quad y \in (0, M) & \quad t > 0 \\
 y &= 0 \quad [u_s]_{y=0} = f_1(x) & \quad x \in (0, L) & \quad t > 0 \\
 y &= M \quad [u_s]_{y=M} = f_2(x) & \quad x \in (0, L) & \quad t > 0
\end{align*}
\]

This is the BVP for Poisson’s Equation for which, in general, all boundary conditions are non-homogeneous. The superposition principle should be used to reduce the problem to the set of supplemental basic problems (see VIII.3.4, p.597).

2. Transient Solution (Basic Case)

Introduce the transient function as

\[U(x, y, t) = u(x, y, t) - u_s(x, y) \]

It can be verified that function \(U \) satisfies \textit{homogeneous} Heat Equation

\[\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} = \frac{l}{\alpha} \frac{\partial U}{\partial t} \]

with four \textit{homogeneous} boundary conditions (of the same type):

\[
\begin{align*}
 x &= 0 \quad [U]_{x=0} = 0 & \quad y \in (0, M) & \quad t > 0 \\
 x &= L \quad [U]_{x=L} = 0 & \quad y \in (0, M) & \quad t > 0 \\
 y &= 0 \quad [U]_{y=0} = 0 & \quad x \in (0, L) & \quad t > 0 \\
 y &= M \quad [U]_{y=M} = 0 & \quad x \in (0, L) & \quad t > 0
\end{align*}
\]

and the initial condition:

\[U(x, y, 0) = u_0(x, y) - u_s(x, y) = U_0(x, y) \]
Separation of variables – 1st stage: We assume that the function \(U(x,y,t) \) can be written as a product of two functions

\[
U(x,y,t) = \Phi(x,y)T(t)
\]

where \(\Phi(x,y) \) is the function of space variables. Substitute it into the
Heat Equation

\[
\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} - \frac{1}{\alpha} \frac{\partial \Phi}{\partial t} = 0
\]

Divide equation by \(\Phi T \):

\[
\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = \frac{l}{\alpha} T'
\]

or using Laplacian operator

\[
\nabla^2 \Phi = \frac{l}{\alpha} T'
\]

Left hand side is a function of space variables only and the right hand side is a function of the time variable, therefore, they have to be equal to a constant (separation constant):

\[
\nabla^2 \Phi = \frac{l}{\alpha} T' = \beta
\]

Boundary conditions for separated functions are:

\[
\begin{align*}
[U]_{y=0} &= [\Phi]_{y=0} T(t) = 0 \quad y \in (0, M) \quad t > 0 \quad \Rightarrow \quad [\Phi]_{y=0} = 0 \\
[U]_{y=L} &= [\Phi]_{y=L} T(t) = 0 \quad y \in (0, M) \quad t > 0 \quad \Rightarrow \quad [\Phi]_{y=L} = 0 \\
[U]_{x=0} &= [\Phi]_{x=0} T(t) = 0 \quad x \in (0, L) \quad t > 0 \quad \Rightarrow \quad [\Phi]_{x=0} = 0 \\
[U]_{x=M} &= [\Phi]_{x=M} T(t) = 0 \quad x \in (0, L) \quad t > 0 \quad \Rightarrow \quad [\Phi]_{x=M} = 0
\end{align*}
\]

There are four homogeneous boundary conditions for the function \(\Phi \).

From the separated equations, consider the equation

\[
\nabla^2 \Phi = \beta
\]

which has a structure of equation of the eigenvalue problem for differential operator \(\nabla^2 \). It is called the Helmholtz Equation.

The solution of the Helmholtz Equation subject to boundary conditions can be easily obtained by the eigenfunction expansion method.

Separation of variables – 2nd stage: Assume

\[
\Phi(x,y) = X(x)Y(y)
\]

Substitute into the Helmholtz Equation

\[
\nabla^2 (XY) = X'Y + XY'' = \zeta XY
\]

Divide by \(XY \)

\[
\frac{X'}{X} + \frac{Y''}{Y} = \beta
\]

Separation of variables in the boundary conditions yield:

\[
\begin{align*}
y \in (0, M) \quad [\Phi]_{y=0} &= [X(0)]Y(0) = 0 \quad \Rightarrow \quad [X]_{y=0} = 0 \\
y \in (0, M) \quad [\Phi]_{y=L} &= [X(L)]Y(y) = 0 \quad \Rightarrow \quad [X]_{y=L} = 0 \\
x \in (0, L) \quad [\Phi]_{x=0} &= X(x)[Y(0)] = 0 \quad \Rightarrow \quad [Y]_{x=0} = 0 \\
x \in (0, L) \quad [\Phi]_{x=M} &= X(x)[Y(M)] = 0 \quad \Rightarrow \quad [Y]_{x=M} = 0
\end{align*}
\]

Note, that we have complete pairs of homogeneous boundary conditions both for \(X \) and \(Y \).
Now, solve consequently the Sturm-Liouville problems for X and Y:

$$\frac{X''}{X} = -\frac{Y''}{Y} + \beta = \mu$$

Equation is separated. It yields first SLP:

$$X'' - \mu X = 0$$

$$[X]_{x=0} = 0 \quad \Rightarrow \quad \mu = -\lambda^2_n \quad n = 1, 2, \ldots$$

$$[X]_{x=L} = 0 \quad \Rightarrow \quad X_n(x)$$

Then the second equation becomes:

$$-\frac{Y''}{Y} + \beta = -\lambda^2_n$$

which in its turn is a separated equation:

$$\frac{Y''}{Y} = \beta + \lambda^2_n = \eta$$

It yields the second Sturm-Liouville Problem:

$$Y'' - \eta Y = 0$$

$$[Y]_{y=0} = 0 \quad \Rightarrow \quad \eta = -\nu^2_m \quad m = 1, 2, \ldots$$

$$[Y]_{y=M} = 0 \quad \Rightarrow \quad Y_m(y)$$

Equation for separation constants yields:

$$\beta + \lambda^2_n = -\nu^2_m \quad \Rightarrow \quad \beta = -\left(\lambda^2_n + \nu^2_m\right)$$

Then equation for T becomes

$$\frac{1}{\alpha} \frac{T'}{T} = \beta = -\left(\lambda^2_n + \nu^2_m\right)$$

Which is the 1st order ordinary differential equation:

$$T' + \alpha \left(\lambda^2_n + \nu^2_m\right)T = 0$$

with the solutions:

$$T_{nm}(t) = e^{-\alpha(\lambda^2_n + \nu^2_m)t}$$

Solution of the Transient Problem:

Construct the solution in the form of double infinite series (eigenfunction expansion):

$$U(x, y, t) = \sum_n \sum_m A_{nm} X_n(x) Y_m(y) e^{-\alpha(\lambda^2_n + \nu^2_m)t}$$

Where the coefficients A_{nm} can be found from the initial condition

$$U(x, y, 0) = U_0(x, y) = \sum_n \sum_m A_{nm} X_n(x) Y_m(y)$$

as the Fourier coefficients of the double Generalized Fourier series:

$$A_{nm} = \frac{\int_0^L \int_0^M U_0(x, y) X_n(x) Y_m(y) dx dy}{\|X_n\| \|Y_m\|}$$
Example: DDNN

\[
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{\alpha} \frac{\partial u}{\partial t}
\]

\(u(x,y,t) : (x,y) \in (0,L) \times (0,M), t > 0\)

Initial Condition: \(u(x,y,0) = u_0(x,y)\)

Boundary Conditions:

\[
x = 0 \quad [u]_{x=0} = 0 \quad y \in (0,M) \quad t > 0 \quad (\text{Dirichlet})
\]

\[
x = L \quad [u]_{x=L} = f_s(y) \quad y \in (0,M) \quad t > 0 \quad (\text{Dirichlet})
\]

\[
y = 0 \quad \left[\frac{\partial u}{\partial y} \right]_{y=0} = 0 \quad x \in (0,L) \quad t > 0 \quad (\text{Neumann})
\]

\[
y = M \quad \left[\frac{\partial u}{\partial y} \right]_{y=M} = 0 \quad x \in (0,L) \quad t > 0 \quad (\text{Neumann})
\]

1. Steady State Solution

Find time-independent solution \(u_s(x,y)\):

\[
\frac{\partial^2 u_s}{\partial x^2} + \frac{\partial^2 u_s}{\partial y^2} = 0
\]

subject to the boundary conditions:

\[
x = 0 \quad [u_s]_{x=0} = 0 \quad y \in (0,M) \quad t > 0
\]

\[
x = L \quad [u_s]_{x=L} = f_s(y) \quad y \in (0,M) \quad t > 0
\]

\[
y = 0 \quad \left[\frac{\partial u_s}{\partial y} \right]_{y=0} = 0 \quad x \in (0,L) \quad t > 0
\]

\[
y = M \quad \left[\frac{\partial u_s}{\partial y} \right]_{y=M} = 0 \quad x \in (0,L) \quad t > 0
\]

This is the basic problem for Laplace’s Equation when, three boundary conditions are non-homogeneous.

Separation of variables: \(u_s(x,y) = XY\)

\[
x = 0 \quad [u_s]_{x=0} = 0 \quad \Rightarrow \quad X(0) = 0
\]

\[
x = L \quad [u_s]_{x=L} = f_s(y)
\]

\[
y = 0 \quad \left[\frac{\partial u_s}{\partial y} \right]_{y=0} = 0 \quad \Rightarrow \quad Y'(0) = 0
\]

\[
y = M \quad \left[\frac{\partial u_s}{\partial y} \right]_{y=M} = 0 \quad \Rightarrow \quad Y'(M) = 0
\]

Separated equation:

\[
\frac{Y''}{Y} = -\frac{X'}{X} = \mu
\]

First, consider equation for \(Y\) (two conditions):

\[
Y'' - \mu Y = 0 \quad \Rightarrow \quad \mu = -\lambda_n^2
\]

\[
Y'(0) = 0 \quad \Rightarrow \quad \lambda_0 = 0 \quad Y_0 = 1
\]

\[
Y'(M) = 0 \quad \lambda_n = \frac{n\pi}{M} \quad Y_n(y) = \cos\left(\frac{n\pi}{M} y\right) = \cos\left(\frac{n\pi}{M} y\right)
\]
Then equations for X:

$X''_n = 0 \quad \Rightarrow \quad X_n(x) = c_1 + c_2 x$

$X''_n - \lambda_n^2 X = 0 \quad \Rightarrow \quad X_n(x) = c_1 \cosh(\lambda_n x) + c_2 \sinh(\lambda_n x)$

Boundary condition at $x = 0$ yields

$X_0(0) = 0 = c_1 + c_2 \cdot 0 = c_i \quad \Rightarrow \quad c_i = 0$

$X_n(0) = 0 = c_1 \cdot 1 + c_2 \cdot 0 = c_i \quad \Rightarrow \quad c_i = 0$

Then

$X_0(x) = x$

$X_n(x) = \sinh\left(\frac{n\pi}{M} x\right)$

Construct the steady state solution as

$u_s(x,y) = a_0 X_0 Y_0 + \sum_{n=1}^{\infty} a_n X_n Y_n = a_0 x + \sum_{n=1}^{\infty} a_n \sinh\left(\frac{n\pi}{M} x\right) \cos\left(\frac{n\pi}{M} y\right)$

This solution should satisfy the boundary condition at $x = L$:

$u_s(L,y) = f_3(y) = a_0 L + \sum_{n=1}^{\infty} a_n \sinh\left(\frac{n\pi}{M} L\right) \cos\left(\frac{n\pi}{M} y\right)$

Which is a cosine Fourier series expansion of $f_3(y)$ with

$a_0 = \frac{1}{LM} \int_0^M f_3(y) dy$

$a_n = \frac{2}{M \sinh\left(\frac{n\pi}{M} L\right)} \int_0^M f_3(y) \cos\left(\frac{n\pi}{M} y\right) dy$

Then the steady state solution becomes:

$$u_s(x,y) = \left[\frac{1}{LM} \int_0^M f_3(y) dy \right] x + \sum_{n=1}^{\infty} \left[\frac{2}{M \sinh\left(\frac{n\pi}{M} L\right)} \int_0^M f_3(y) \cos\left(\frac{n\pi}{M} y\right) dy \right] \sinh\left(\frac{n\pi}{M} x\right) \cos\left(\frac{n\pi}{M} y\right)$$

2. Transient Solution

Introduce the transient function as

$U(x,y,t) = u(x,y,t) - u_s(x,y)$

Function U satisfies homogeneous Heat Equation

$$\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} = \frac{1}{\alpha} \frac{\partial U}{\partial t}$$

with four homogeneous boundary conditions:

$x = 0 \quad [U]_{x=0} = 0 \quad y \in (0,M) \quad t > 0$

$x = L \quad [U]_{x=L} = 0 \quad y \in (0,M) \quad t > 0$

$y = 0 \quad \frac{\partial U}{\partial y} \bigg|_{y=0} = 0 \quad x \in (0,L) \quad t > 0$

$y = M \quad \frac{\partial U}{\partial y} \bigg|_{y=M} = 0 \quad x \in (0,L) \quad t > 0$

and the initial condition:

$U(x,y,0) = u_0(x,y) - u_s(x,y) \equiv U_0(x,y)$
Separation of variables $U = XYT$ yields a separated equation

$$X'' + Y'' = \frac{1}{\alpha} T' = \beta$$

with homogeneous boundary conditions:

- $x = 0 \quad [U]_{x=0} = 0 \quad \Rightarrow \quad X(0) = 0$
- $x = L \quad [U]_{x=L} = 0 \quad \Rightarrow \quad X(L) = 0$
- $y = 0 \quad \left[\frac{\partial U}{\partial y} \right]_{y=0} = 0 \quad \Rightarrow \quad Y'(0) = 0$
- $y = M \quad \left[\frac{\partial U}{\partial y} \right]_{y=M} = 0 \quad \Rightarrow \quad Y'(M) = 0$

Solve consequently the Sturm-Liouville problems for X and Y:

$$X'' = -\frac{Y''}{Y} + \beta = \mu$$

Then the second equation becomes:

$$-\frac{Y''}{Y} + \beta = \mu = -\lambda_n^2$$

which in its turn is a separated equation:

$$Y'' = \beta + \lambda_n^2 = \eta$$

It yields the second Sturm-Liouville Problem:

$$Y'' = -\eta Y = 0 \quad \eta = -\nu_m^2 \quad m = 0, 1, 2, \ldots$$

$$[Y]_{y=0} = 0 \quad \Rightarrow \quad \nu_0 = 0 \quad Y_0(y) = 1$$

$$[Y]_{y=M} = 0 \quad \nu_m = \frac{m\pi}{M} \quad Y_m(y) = \cos\left(\frac{m\pi}{M} y\right)$$

Equation for separation constants yields:

$$\beta + \lambda_n^2 = \eta = -\nu_m^2 \quad \Rightarrow \quad \beta = -\left(\lambda_n^2 + \nu_m^2\right)$$

Then equation for T becomes

$$\frac{1}{\alpha} \frac{T'}{T} = \beta = -\left(\lambda_n^2 + \nu_m^2\right)$$

Which is the 1st order ordinary differential equation:

$$T'' + \alpha \left(\lambda_n^2 + \nu_m^2\right) T = 0$$

with the solutions:

$$T_m(t) = e^{-\alpha(\lambda_n^2 + \nu_m^2)t}$$

Solution of the Transient Problem:

Construct the solution in the form of double infinite series (eigenfunction expansion):

$$U(x, y, t) = \sum_{n=1}^{\infty} A_{n0} X_n(x) Y_0(y) e^{-\alpha \lambda_n^2 t} + \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} A_{nm} X_n(x) Y_m(y) e^{-\alpha(\lambda_n^2 + \nu_m^2)t}$$
Where the coefficients A_{nm} can be found from the initial condition:

$$U(x, y, 0) = U_0(x, y) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{nm} X_n Y_m$$

$$U_0(x, y) = \left[\sum_{n=0}^{\infty} A_{n0} X_n \right] Y_0 + \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{nm} X_n Y_m$$

where

$$\left[\sum_{n=0}^{\infty} A_{n0} X_n \right] = \frac{1}{M} \int_{0}^{M} U_0(x, y) dy$$

$$\left[\sum_{n=0}^{\infty} A_{nm} X_n \right] = \frac{2}{M} \int_{0}^{M} U_0(x, y) Y_m(y) dy$$

Then

$$A_{n0} = \frac{2}{LM} \int_{0}^{L} \int_{0}^{M} U_0(x, y) X_n(x) dy dx$$

$$A_{nm} = \frac{4}{LM} \int_{0}^{L} \int_{0}^{M} U_0(x, y) X_n(x) Y_m(y) dxdy$$

3. Solution of IBVP

$$u(x, y, t) = U(x, y, t) + u_s(x, y)$$

$$u(x, y, t) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{nm} \sin \left(\frac{n\pi}{L} x \right) \cos \left(\frac{m\pi}{M} y \right) e^{-\left(\frac{n^2\pi^2}{L^2} + \frac{m^2\pi^2}{M^2} \right) t}$$

$$+ a_0 x + \sum_{n=0}^{\infty} a_n \sinh \left(\frac{m\pi}{M} x \right) \cos \left(\frac{m\pi}{M} y \right)$$

where coefficients are

$$A_{0n} = \frac{2}{LM} \int_{0}^{L} \int_{0}^{M} \left[g(x, y) - u_s(x, y) \right] \sin \left(\frac{n\pi}{L} x \right) dy dx$$

$$A_{nm} = \frac{4}{LM} \int_{0}^{L} \int_{0}^{M} \left[g(x, y) - u_s(x, y) \right] \cos \left(\frac{m\pi}{M} y \right) \sin \left(\frac{n\pi}{L} x \right) dy dx$$

$$a_0 = \frac{1}{LM} \int_{0}^{M} f(y) dy$$

$$a_n = \frac{2}{M \sinh \left(\frac{m\pi}{M} L \right)} \int_{0}^{M} f(y) \cos \left(\frac{m\pi}{M} y \right) dy$$
Chapter VIII PDE

4. Maple Example: heat5dn-2.mws

\[L = 2, \quad M = 4, \quad \alpha = 0.5, \quad f(y) = 1, \quad g(x,y) = x(x-L) + y(y-M) \]

2-D Heat Equation Example DD-NN

\[\begin{align*}
\text{restart;} \\
> \text{with(plots);} \\
> L := 2; M := 4; \alpha := 0.5; \\
\end{align*} \]

\[\begin{align*}
> f(y) := 1; \\
> \text{plot}(f(y), y=0..M, \text{axes=boxed}); \\
\end{align*} \]

\[\begin{align*}
> u_0(x,y) := x(x-L)*y(y-M); \\
> \text{plot3d}(u_0(x,y), x=0..L, y=0..M, \text{axes=boxed}); \\
\end{align*} \]

Steady State Solution:

\[\begin{align*}
> a[0] := \int f(y), y=0..M) / L / M; \\
\end{align*} \]

\[\begin{align*}
> a[m] := 2/M*\int f(y) * \cos(m*Pi*y/M), y=0..M) / \sinh(m*Pi*L/M); \\
\end{align*} \]

\[\begin{align*}
> u_s[m](x,y) := a[m] * \sinh(m*Pi*x/M) * \cos(m*Pi*y/M); \\
> u_s(x,y) := a[0] * x + \sum u_s[m](x,y), m=1..2; \\
> \text{plot3d}(u_s(x,y), x=0..L, y=0..M, \text{axes=boxed, projection=0.92}); \\
\end{align*} \]
Transient Solution:

\[
U_0(x, y) := u_0(x, y) - u_s(x, y);
\]

\[
U_0(x, y) = x (x - 2) y (y - 4) - \frac{x}{2}
\]

\[
A[n, 0] := 2 \int \int U_0(x, y) \sin(n \pi x / L) \, dx \, dy / L / M;
\]

\[
A[n, m] := 4 \int \int U_0(x, y) \cos(m \pi y / M) \sin(n \pi x / L) \, dx \, dy / L / M;
\]

\[
U[n, 0](x, y, t) := A[n, 0] \sin(n \pi x / L) \exp(-n^2 / L^2 \pi^2 t \alpha);
\]

\[
U[n, m](x, y, t) := A[n, m] \sin(n \pi x / L) \cos(m \pi y / M) \exp(-m^2 / M^2 + n^2 / L^2 \pi^2 t \alpha);
\]

\[
U(x, y, t) := \sum U[n, 0](x, y, t), n = 1..10 + \sum \sum U[n, m](x, y, t), m = 1..10, n = 1..10;
\]

\[
U(x, y, 0) := \text{subs}(t = 0, U(x, y, t));
\]

Solution of IBVP:

\[
u(x, y, t) := u_0(x, y) + U(x, y, t);
\]

\[
u(x, y, 0) := \text{subs}(t = 0, u(x, y, t));
\]

\[
\text{animate3d}(u(x, y, t), x = 0..L, y = 0..M, t = 0..3, \text{frames} = 100, \text{axes} = \text{boxed});
\]
VIII.3.2.2 3-D BASIC CASE

Consider the Helmholtz equation which appears in the separation of variables in the Basic IBVP for the 3-D Heat Equation:

\[
\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2} = \frac{1}{\alpha} \frac{\partial U}{\partial t} \quad (x,y,z) \in (0,L) \times (0,M) \times (0,K) , t > 0
\]

Separation of variables:

\[U(x,y,z,t) = \Phi(x,y,z) T(t)\]

Separated equation:

\[
\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2} = \frac{1}{\alpha} \frac{T'}{T} = \beta
\]

Separated equation yields the Helmholtz Equation:

\[
\nabla^2 \Phi = \beta \Phi
\]

which constitutes the eigenvalue problem for differential operator \(\nabla^2 \).

The solution of the Helmholtz Equation subject to boundary conditions can be easily obtained by the eigenfunction expansion method.

Assume

\[\Phi(x,y,z) = X(x)Y(y)Z(z)\]

Substitute into the Helmholtz Equation

\[\nabla^2 (XYZ) = X''YZ + XY'Z + XYZ'' = \beta XYZ\]

Divide by \(XYZ \)

\[
\frac{X''}{X} + \frac{Y''}{Y} + \frac{Z''}{Z} = \beta
\]

Separation of variables in the boundary conditions yields:

\[
\begin{align*}
 x = 0 & \quad [\Phi]_{x=0} = \left[X(0) \right]Y(y)Z(z) = 0 \quad \Rightarrow \quad [X]_{x=0} = 0 \\
 x = L & \quad [\Phi]_{x=L} = \left[X(L) \right]Y(y)Z(z) = 0 \quad \Rightarrow \quad [X]_{x=L} = 0 \\
 y = 0 & \quad [\Phi]_{y=0} = X(x)\left[Y(0) \right]Z(z) = 0 \quad \Rightarrow \quad [Y]_{y=0} = 0 \\
 y = M & \quad [\Phi]_{y=M} = X(x)\left[Y(M) \right]Z(z) = 0 \quad \Rightarrow \quad [Y]_{y=M} = 0 \\
 z = 0 & \quad [\Phi]_{z=0} = X(x)Y(y)\left[Z(0) \right] = 0 \quad \Rightarrow \quad [Z]_{z=0} = 0 \\
 z = K & \quad [\Phi]_{z=K} = X(x)Y(y)\left[Z(K) \right] = 0 \quad \Rightarrow \quad [Z]_{z=K} = 0
\end{align*}
\]

Note, that we have complete pairs of homogeneous boundary conditions for \(X \), \(Y \) and \(Z \).

Now, solve consequently the Sturm-Liouville problems for \(X \) and \(Y \):

\[
\frac{X''}{X} = -\frac{Y''}{Y} - \frac{Z''}{Z} + \beta = \mu
\]
Equation is separated. It yields the first Sturm-Liouville Problem:

\[
X'^* - \mu X = 0 \\
[X]_{x=0} = 0 \quad \Rightarrow \quad \mu = -\lambda_n^2 \quad n = (0), 1, 2, \ldots \\
[X]_{x=L} = 0 \\
\]

Then the equation becomes:

\[
-\frac{Y'^*}{Y} - \frac{Z'^*}{Z} + \beta = \mu = -\lambda_n^2 \\
\]

which in its turn is a separated equation:

\[
-\frac{Y'^*}{Y} = -\frac{Z'^*}{Z} + \beta + \lambda_n^2 = \eta \\
\]

It yields the second Sturm-Liouville Problem:

\[
Y'^* - \eta Y = 0 \\
[Y]_{y=0} = 0 \quad \Rightarrow \quad \eta = -\nu_m^2 \quad m = (0), 1, 2, \ldots \\
[Y]_{y=H} = 0 \\
\]

Then one more step produces equation

\[
-\frac{Z'^*}{Z} + \beta + \lambda_n^2 = -\nu_m^2 \\
\]

which also can be separated

\[
-\frac{Z'^*}{Z} = \beta + \lambda_n^2 + \nu_m^2 = \gamma \\
\]

It yields the third Sturm-Liouville Problem:

\[
Z'^* - \gamma Z = 0 \\
[Z]_{z=0} = 0 \quad \Rightarrow \quad \gamma = -\omega_k^2 \quad k = (0), 1, 2, \ldots \\
[Z]_{z=K} = 0 \\
\]

Then the second part of the last equation becomes

\[
\beta + \lambda_n^2 + \nu_m^2 = -\omega_k^2 \\
\]

and the constant of separation is

\[
\beta_{nmk} = -\left(\lambda_n^2 + \nu_m^2 + \omega_k^2\right) \\
\]

Then the solution of the Basic IBVP for the Heat Equation is:

\[
U(x,y,z,t) = \sum_n \sum_m \sum_k B_{nmk} X_n(x) Y_m(y) Z_k(z) e^{-\omega_k t} \left(\lambda_n^2 + \nu_m^2 + \omega_k^2\right) \\
\]

where the coefficients \(B_{nmk} \) can be found from the initial condition as the Fourier coefficients of the triple Generalized Fourier Series:

\[
B_{nmk} = \frac{\int_0^L \int_0^H \int_0^L U_0(x,y,z) X_n(x) Y_m(y) Z_k(z) \, dx \, dy \, dz}{\|X_n\| \|Y_m\| \|Z_k\|} \\
\]
Professor Gabriel Węcel

(Institute of Thermal Technology, Silesian University of Technology, Gliwice, Poland)

has visited our class on February 1, 2013
Summary

THE HEAT EQUATION

3-D Cartesian Coordinates

\[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} + F(x,y,z) = \frac{\partial u}{\partial t} \]

\[(x,y,z) \in (0,L) \times (0,M) \times (0,K) \subseteq \mathbb{R}^3 \]

\[t > 0 \]

\[u(x,y,z,t) = U(x,y,z,t) + u_s(x,y,z) \]

STEADY STATE PROBLEM - PDE

\[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} + F(x,y,z) = 0 \]

\[[u]_s = f \]

TRANSIENT PROBLEM - HE

\[\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2} + \frac{1}{\alpha} \frac{\partial U}{\partial t} = \frac{1}{\alpha} \frac{\partial u}{\partial t} \]

\[[U]_s = 0 \]

[STEADY STATE SOLUTION - PE]

\[u(x,y,z,t) = U(x,y,z,t) + u_s(x,y,z) \]

TRANSIENT SOLUTION:

\[u(x,y,z,t) = u_s(x,y,z) + \sum_{n} \sum_{m} \sum_{k} B_{nmk} X_n Y_m Z_k e^{-\alpha (\xi^2 + \eta^2 + \zeta^2)} \]

SOLUTION

\[u(x,y,z,t) = u_s(x,y,z) + \sum_{n} \sum_{m} \sum_{k} B_{nmk} X_n Y_m Z_k e^{-\alpha (\xi^2 + \eta^2 + \zeta^2)} \]

SEPARATION OF VARIABLES

\[U(x,y,z,t) = \Phi(x,y,z)T(t) \]

\[\frac{\nabla^2 \Phi}{\Phi} = \frac{1}{\alpha \beta} \Rightarrow \frac{T'}{T} = \beta \]

HELMHOLTZ EQUATION:

\[\nabla^2 \Phi = \beta \Phi \]

\[\Phi(x,y,z) = X(x)Y(y)Z(z) \]

\[\lambda_n \cdot \nu_n \cdot \omega_k \]

\[X_n, Y_m, Z_k \]

\[\beta_{nmk} = -\left(\lambda_n^2 + \nu_n^2 + \omega_k^2 \right) \]

TRANSIENT SOLUTION:

\[\Phi = \sum_{n} \sum_{m} \sum_{k} B_{nmk} X_n Y_m Z_k e^{-\alpha (\xi^2 + \eta^2 + \zeta^2)} \]

\[B_{nmk} = \frac{\int_{0}^{L} \int_{0}^{M} \int_{0}^{K} (u_0 - u_s) X_n Y_m Z_k dx dy dz}{\int_{0}^{L} \int_{0}^{M} \int_{0}^{K} \|X_n\|^2 \|Y_m\|^2 \|Z_k\|^2} \]
VIII.3.3. HEAT EQUATION IN CYLINDRICAL COORDINATES

VIII.3.3.1 LONG SOLID CYLINDER long solid cylinder with angular symmetry: \(\frac{\partial u}{\partial z} = \frac{\partial u}{\partial \theta} = 0 \)

BASIC CASE: Homogeneous Equation and Boundary Conditions

\[
\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{\alpha \, t} u = 0 \quad u(r,t): \ r \in [0, r_1), \ t > 0
\]

Initial condition: \(u(r,0) = u_0(r) \)

Boundary conditions: \(u(0,t) < \infty \quad t > 0 \quad \text{bounded} \)

\[
[u]_{r=r_1} = 0 \quad t > 0 \quad (I, II \ or \ III^{rd} \ kind)
\]

1) Separation of variables:

\[
u(r,t) = R(r)T(t)
\]

\[
u(r,t) \text{ bounded } \implies R(0) < \infty \quad \text{bounded}
\]

\[
[u]_{r=r_1} = [R]_{r=r_1} T(t) = 0 \quad \implies \ [R]_{r=r_1} = 0
\]

\[
\frac{R''}{R} + \frac{1}{r} \frac{R'}{R} = \frac{1}{\alpha T} = \mu
\]

2) Sturm-Liouville Problem:

\[
\frac{R''}{R} + \frac{1}{r} \frac{R'}{R} = \mu
\]

(From SLP, \(\mu = -\lambda^2 \))

\[
r^2 R'' + r R + \left[\lambda^2 r^2 - \alpha^2 \right] R = 0 \quad \text{Bessel Equation of 0 order}
\]

Eigenvalues:

\[
\mu_n = -\lambda_n^2 \quad n = 1, 2, ...
\]

Eigenfunctions:

\[
R_n(r) = J_0(\lambda_n r)
\]

Weight Function:

\[
p(r) = r
\]

3) Equation for \(T \):

\[
T' - \alpha \mu T = 0
\]

\[
T' + \alpha \lambda_n^2 T = 0 \quad \implies \quad T_n(t) = e^{-\alpha \lambda_n^2 t}
\]

4) Solution:

\[
u(r,t) = \sum_{n=1}^{\infty} a_n R_n T_n = \sum_{n=1}^{\infty} a_n J_0(\lambda_n r) e^{-\alpha \lambda_n^2 t}
\]

Initial condition \(u(r,0) = u_0(r) = \sum_{n=1}^{\infty} a_n R_n \quad \implies \quad a_n = \frac{\int_0^{r_1} u_0(r) R_n(r) \, r \, dr}{\int_0^{r_1} R_n^2(r) \, r \, dr} = \frac{\int_0^{r_1} u_0(r) J_0(\lambda_n r) \, r \, dr}{\int_0^{r_1} J_0^2(\lambda_n r) \, r \, dr}
GENERAL CASE: Non-Homogeneous Equation, Non-Homogeneous Boundary Conditions

\[
\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + F(r) = \frac{1}{\alpha} \frac{\partial u}{\partial t} \quad u(x,t): \quad r \in (0,r_i), \quad t > 0
\]

Initial condition:
\[u(r,0) = u_0(r) \]

Boundary conditions:
\[u(r,t) < \infty \quad t > 0 \quad \text{bounded} \]
\[[u]_{r=r_i} = f_i \quad t > 0 \quad (I, II \text{ or IIIrd kind}) \]

I Steady State Solution

Time-independent solution \[u_i(r) \]
Substitution of a time-independent function into the heat equation leads to the following ordinary differential equation:
\[
\frac{\partial^2 u_i}{\partial r^2} + \frac{1}{r} \frac{\partial u_i}{\partial r} + F(r) = 0 \quad u_i(r), \quad r \in (0,r_i)
\]
subject to the boundary conditions of the same kind as for PDE:
\[[u_i]_{r=0}, \quad t > 0 \quad \text{bounded} \]
\[[u_i]_{r=r_i} = f_i, \quad t > 0 \quad (I, II \text{ or IIIrd kind}) \]

General solution of ODE:
\[
\begin{align*}
\frac{\partial}{\partial r} \left(r \frac{\partial u_i}{\partial r} \right) &= -rF(r) \\
r \frac{\partial u_i}{\partial r} &= \int \left[-rF(r) \right] dr + c_1 \\
\frac{\partial u_i}{\partial r} &= \int \left[-rF(r) \right] dr + c_1 + \frac{c_2}{r} \\
u_i(r) &= \int \left\{ \frac{1}{r} \int \left[-rF(r) \right] dr \right\} dr + c_1 \ln r + c_2
\end{align*}
\]
For bounded solution, it is necessarily \(c_1 = 0 \), therefore the general steady state solution in circular domain is
\[
u_i(r) = \int \left\{ \frac{1}{r} \int \left[-rF(r) \right] dr \right\} dr + c_2
\]
Solutions of BVPs for circular domain with uniform heat generation are provided by the Table.

II Transient Solution:

Define the transient solution by equation:
\[
U(r,t) = u(r,t) - u_i(r)
\]
then solution of the original problem is a sum of transient solution and steady state solution:
\[
u(r,t) = U(r,t) + u_i(r)
\]
Substitute it into the Heat Equation:

\[
\frac{\partial^2 U}{\partial r^2} + \frac{1}{r} \frac{\partial U}{\partial r} + \frac{\partial^2 u_s}{\partial r^2} + \frac{1}{r} \frac{\partial u_s}{\partial r} + F(r) = \frac{1}{\alpha} \frac{\partial U}{\partial t}
\]

Since \(\frac{\partial^2 u_s}{\partial r^2} + \frac{1}{r} \frac{\partial u_s}{\partial r} + F(x) = 0 \), it yields

\[
\frac{\partial^2 U}{\partial r^2} + \frac{1}{r} \frac{\partial U}{\partial r} = \frac{1}{\alpha} \frac{\partial U}{\partial t}
\]

We obtained the equation for the new unknown function \(U(r,t) \) which has homogeneous boundary condition:

\[
r = r_f \quad [U]_{r=r_f} = [u_s]_{r=r_f} = f_i - f_f = 0
\]

As a result, we reduced the non-homogeneous problem to a homogeneous equation for \(U(r,t) \) with homogeneous boundary conditions. Initial condition for function \(U(r,t) \):

\[
U(r,0) = u(r,0) - u_s(r) = u_o(r) - u_s(r)
\]

Solution for \(U(r,t) \)

We consider the following BASIC initial boundary value problem:

\[
\frac{\partial^2 U}{\partial r^2} + \frac{1}{r} \frac{\partial U}{\partial r} - \frac{1}{\alpha} \frac{\partial U}{\partial t} = 0 \quad U(r,t), \quad r \in (0,r_f), \quad t > 0
\]

initial condition:

\[
U(r,0) = u_o(r) - u_s(r)
\]

boundary conditions:

\[
U(0,t)<\infty \quad t > 0
\]

\[
[U]_{r=r_f} = 0 \quad t > 0
\]

We already know a solution of this basic problem obtained by separation of variables:

\[
U(x,t) = \sum_{n=1}^{\infty} a_n R_n = \sum_{n=1}^{\infty} a_n J_0(\lambda_n r)e^{-\alpha\lambda_n^2 t}
\]

where coefficients \(a_n \) are the Fourier coefficients determined by the corresponding initial condition for the function \(U(x,t) \):

\[
a_n = \frac{\int_0^r [u_o(r) - u_s(r)] R_n(r) r dr}{\int_0^r R_n^2(r) r dr} = \frac{\int_0^r [u_o(r) - u_s(r)] J_0(\lambda_n r) r dr}{\int_0^r J_0^2(\lambda_n r) r dr}
\]

III Solution of IBVP:

Solution of the original IBVP is a sum of steady state solution and transient solution:

\[
u(r,t) = u_s(r) + U(r,t)
\]
VIII.3.3.2 HOLLOW CYLINDER BASIC CASE: Homogeneous Equation and Boundary Conditions

\[
\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} = \frac{1}{\alpha} \frac{\partial u}{\partial t} \quad u(x,t): \quad r \in (0,r_1), \ t > 0
\]

Initial condition:
\[
u(r,0) = u_0(r)
\]

Boundary conditions:
\[
[u]_{r=r_1} = 0 \quad t > 0 \quad (I, \ II \ or \ IIIrd \ kind)
\]
\[
[u]_{r=r_2} = 0 \quad t > 0 \quad (I, \ II \ or \ IIIrd \ kind)
\]

1) Separation of variables:
\[
u(r,t) = R(x)T(t)
\]
\[
[u]_{r=r_1} = [R]_{r=r_1} T(t) = 0 \quad \Rightarrow \quad [R]_{r=r_1} = 0
\]
\[
[u]_{r=r_2} = [R]_{r=r_2} T(t) = 0 \quad \Rightarrow \quad [R]_{r=r_2} = 0
\]
\[
\frac{R''}{R} + \frac{1}{r} \frac{R'}{R} = \frac{1}{\alpha} \frac{T'}{T} = \mu
\]

2) Sturm-Liouville Problem:
\[
\frac{1}{R} \frac{R''}{R} + \frac{1}{r} \frac{1}{R} \frac{R'}{R} = \mu
\]
\[
(\mu = -\lambda^2 \ SLP)
\]

\[
 r^2 R'' + r R + \left[\lambda^2 r^2 - 0^2 \right] R = 0 \quad \text{Bessel Equation of 0 order}
\]

Eigenvalues:
\[
\mu_n = -\lambda_n^2 \quad n = 1,2,...
\]
\[
\lambda_n \text{ are roots of characteristic eqn}
\]

Eigenfunctions:
\[
R_n(r) = c_{1,n} J_0(\lambda_n r) + c_{2,n} Y_0(\lambda_n r)
\]

3) Equation for \(T \):
\[
T' - \alpha \mu T = 0
\]
\[
T' + \alpha \lambda_n^2 T = 0 \quad \Rightarrow \quad T_n(t) = e^{-\alpha \lambda_n^2 t}
\]

4) Solution:
\[
u(r,t) = \sum_{n=1}^{\infty} a_n R_n(r) T_n(t) = \sum_{n=1}^{\infty} a_n R_n(r) e^{-\alpha \lambda_n^2 t}
\]

Initial condition:
\[
u(r,0) = u_0(r) = \sum_{n=1}^{\infty} a_n R_n \quad \Rightarrow \quad a_n = \frac{\int_0^{r_1} u_0(r) R_n(r) r dr}{\int_0^{r_1} R_n^2(r) r dr}
\]
GENERAL CASE: Non-Homogeneous Equation, Non-Homogeneous Boundary Conditions

\[
\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + F(r) = \frac{1}{\alpha} \frac{\partial u}{\partial t} \quad u(x,t): \quad r \in (0,r_j), \quad t > 0
\]

Initial condition:
\[
u(r,0) = u_0(r)
\]

Boundary conditions:
\[
[u]_{r=r_i} = f_1, \quad t > 0 \quad (I, II or IIIrd kind)
\]
\[
[u]_{r=r_j} = f_2, \quad t > 0 \quad (I, II or IIIrd kind)
\]

I Steady State Solution

Time-independent solution \(u_i(r) \)

Substitution of a time-independent function into the heat equation leads to the following ordinary differential equation:
\[
\frac{\partial^2 u_i}{\partial r^2} + \frac{1}{r} \frac{\partial u_i}{\partial r} + F(r) = 0 \quad u_i(r), \quad r \in (0,r_j)
\]

subject to the boundary conditions of the same kind as for PDE:
\[
[u]_{r=r_i} = f_1, \quad t > 0 \quad (I, II or IIIrd kind)
\]
\[
[u]_{r=r_j} = f_2, \quad t > 0 \quad (I, II or IIIrd kind)
\]

General solution of ODE:
\[
u_i(r) = \int \left\{ \int \frac{1}{r} \left[-rF(r) \right] dr \right\} dr + c_1 \ln r + c_2
\]

Coefficients \(c_1, c_2 \) have to be determined from boundary conditions.

II Transient Solution:

Define the transient solution by equation:
\[
U(r,t) = u(r,t) - u_i(r), \quad u(r,t) = U(r,t) + u_i(r)
\]

Substitution into the Heat Equation yields an equation for transient solution:
\[
\frac{\partial^2 U}{\partial r^2} + \frac{1}{r} \frac{\partial U}{\partial r} = \frac{1}{\alpha} \frac{\partial U}{\partial t}
\]

for the new unknown function \(U(r,t) \) which has two homogeneous boundary conditions:
\[
r = r_i \quad [U]_{r=r_i} = [u]_{r=r_i} - [u_i]_{r=r_i} = f_1 - f_i = 0
\]
\[
r = r_j \quad [U]_{r=r_j} = [u]_{r=r_j} - [u_i]_{r=r_j} = f_2 - f_j = 0
\]

and initial condition:
\[
U(r,0) = u(r,0) - u_i(r) = u_0(r) - u_i(r)
\]
Solution for $U(r,t)$

We consider the following BASIC initial boundary value problem:

\[
\frac{\partial^2 U}{\partial r^2} + \frac{1}{r} \frac{\partial U}{\partial r} = \frac{1}{\alpha} \frac{\partial U}{\partial t}, \quad r \in (0, r_1), \quad t > 0
\]

Initial condition:
\[U(r,0) = u_0(r) - u_s(r)\]

Boundary conditions:
\[
[U]_{r=r_0} = 0, \quad t > 0 \\
[U]_{r=0} = 0, \quad t > 0
\]

We already know a solution of this basic problem obtained by separation of variables:

\[
U(x,t) = \sum_{n=1}^{\infty} a_n R_n T_n = \sum_{n=1}^{\infty} a_n R_n (r) e^{-\alpha \lambda^2 t}
\]

where coefficients a_n are the Fourier coefficients determined by the corresponding initial condition for the function $U(x,t)$:

\[
a_n = \frac{2}{r_1^2} \int_0^{r_1} \left[u_0(r) - u_s(r)\right] R_n (r) rdr
\]

III Solution of IBVP:

Solution of the original IBVP is a sum of steady state solution and transient solution:

\[
u(r,t) = u_s(r) + U(r,t)
\]
VIII.3.3 HEAT EQUATION in Cylindrical Coordinates:

\[
\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial z^2} + \frac{g}{k} = \frac{1}{\alpha} \frac{\partial u}{\partial t}
\]

1) Long cylinder

\[
\left(\frac{\partial u}{\partial z} = 0 \right):
\]

\[
\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{g}{k} = \frac{1}{\alpha} \frac{\partial u}{\partial t}
\]

2) Short cylinder with angular symmetry \(\left(\frac{\partial u}{\partial \theta} = 0 \right) \):

\[
\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial z^2} + \frac{g}{k} = \frac{1}{\alpha} \frac{\partial u}{\partial t}
\]

3) Cylindrical surface of fixed radius \(r \) \(\left(\frac{\partial u}{\partial r} = 0 \right) \):

\[
\frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial z^2} + \frac{g}{k} = \frac{1}{\alpha} \frac{\partial u}{\partial t}
\]

Thin-wall cylindrical pipe
BASIC IBVP FOR HEAT EQUATION IN FINITE SOLID CYLINDER

Consider the Helmholtz equation which appears in the separation of variables in the Basic IBVP for the 3-D Heat Equation:

\[
\begin{array}{l}
\frac{\partial^2 U}{\partial r^2} + \frac{1}{r} \frac{\partial U}{\partial r} + \frac{1}{r^2} \frac{\partial^2 U}{\partial \theta^2} + \frac{1}{r^2} \frac{\partial^2 U}{\partial z^2} - \frac{1}{\alpha} \frac{\partial U}{\partial t} = 0 \\

(r, \theta, z) \in [0, r_f] \times [0, 2\pi] \times (0, L), \quad t > 0
\end{array}
\]

\[
(r, \theta, z) \in [0, r_f] \times [-\pi, \pi] \times (0, L)
\]

Separation of variables:

\[
U(r, \theta, z, t) = \Phi(r, \theta, z)T(t)
\]

Separated equation:

\[
\begin{array}{l}
\frac{\partial^2 \Phi}{\partial r^2} + \frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \theta^2} + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial z^2} = \frac{1}{\alpha} \frac{T'}{T} = \beta
\end{array}
\]

Separated equation yields the Helmholtz Equation:

\[
\begin{array}{l}
\nabla^2 \Phi = \beta \\
\n\nabla^2 \Phi = \beta \Phi
\end{array}
\]

The solution of the Helmholtz Equation subject to boundary conditions can be obtained by the eigenfunction expansion method.

Assume

\[
\Phi(r, \theta, z) = R(r) \Theta(\theta) Z(z)
\]

Substitute into the Helmholtz Equation

\[
\frac{R''}{R} + \frac{1}{r} \frac{R'}{r} + \frac{1}{\Theta} \frac{\Theta''}{\Theta} + \frac{1}{Z} \frac{Z''}{Z} = \beta
\]

boundary conditions

Separation of variables in the boundary conditions yields:

\[
\begin{array}{l}
\begin{align*}
\Phi_{r=r_f} & = [R(r_f)] \Theta(\theta) Z(z) = 0 \quad \Rightarrow \quad [R]_{r=r_f} = 0 \\
\Phi_{z=0} & = R(r) \Theta(\theta) [Z(0)] = 0 \quad \Rightarrow \quad [Z]_{z=0} = 0 \\
\Phi_{z=L} & = R(r) \Theta(\theta) [Z(L)] = 0 \quad \Rightarrow \quad [Z]_{z=L} = 0
\end{align*}
\end{array}
\]

From physical consideration, we need

bounded solution

\[
\begin{array}{l}
\Phi(r, \theta, z) = \Phi(r, \theta + 2\pi, z) \quad \Rightarrow \quad [R]_{r=0} < \infty
\end{array}
\]

2\pi-periodic solution

\[
\Phi(r, \theta, z) = \Phi(r, \theta + 2\pi, z) \quad \Rightarrow \quad \Theta(\theta + 2\pi) = \Theta(\theta)
\]

all boundary conditions are homogeneous

\[
[U]_{r=r_f, \theta=0, \theta=2\pi, z=0, L} = 0
\]
Separate variables

\[\frac{\Theta''}{\Theta} = r^2 \beta - r^2 \frac{R''}{R} - r \frac{R'}{R} - r^2 \frac{Z''}{Z} = \eta \]

1st equation

\[\Theta'' - \eta \Theta = 0 \]

that is the SLP without boundary conditions, with condition of periodicity \(\Theta(\theta + 2\pi) = \Theta(\theta) \) (see also the section VIII.3.6).

It can be considered in the interval \(-\pi \leq \theta < \pi \) with the condition \(\Theta(-\pi) = \Theta(\pi) \)

The case \(\eta = 0 \) yields the linear solution
\[\Theta_0 = c_1 \theta + c_2 \]
The only periodic linear function is a constant function, therefore, \(\Theta_0 = 1 \)
can be taken as an eigenfunction corresponding to \(\eta_0 = 0 \).

For positive eigenvalues, the separation constant has to be \(\eta = -\mu^2 \), then the general solution is
\[\Theta_n = c_1 \cos \mu \theta + c_2 \sin \mu \theta \]
A function with a period \(T = \frac{2\pi}{n} \) is also a \(2\pi \)-periodic. Therefore, for \(2\pi \)-periodic solution, the frequency \(\mu \) can be any positive integer
\[\mu = \frac{2\pi}{T} = \frac{2\pi}{2\pi} n = n. \]
So, for \(\eta_n = -n^2 \), the corresponding eigenfunctions are
\[\Theta_n = c_1 \cos n \theta + c_2 \sin n \theta \]
That is consistent with the standard Fourier series over symmetric \(2\pi \)-interval \((-\pi, \pi)\), which is based on the complete set of mutually orthogonal functions:
\[\{1, \cos(n\theta), \sin(n\theta)\} \]

Therefore, solution of the first equation can be summarized as:

\[
\begin{align*}
\eta_0 &= 0 & \Theta_0(\theta) &= l \\
\eta_n &= -n^2 & \Theta_n(\theta) &= a_n \cos(n\theta) + b_n \sin(n\theta) & n = 1, 2, \ldots
\end{align*}
\]

2nd equation

\[r^2 \beta - r^2 \frac{R''}{R} - r \frac{R'}{R} - r^2 \frac{Z''}{Z} = -n^2 \quad n = 0, 1, 2, \ldots \]

\[\frac{R''}{R} + \frac{1}{r} \frac{R'}{R} - \frac{n^2}{r^2} = \beta - \frac{Z''}{Z} = \mu \quad \text{separate variables} \]

\[\frac{R''}{R} + \frac{1}{r} \frac{R'}{R} - \frac{n^2}{r^2} = \mu \quad \text{consider equation for } R \]
That is the Sturm-Liouville problem for Bessel Equation of order \(n \)
\[
r^2 R^* + r R' + \left[\left(-\mu \right) r^2 - n^2 \right] R = 0
\]
\[
\left(r R' \right)' + \left[-\frac{n^2}{r} + (-\mu) \right] R = 0
\]
\[
\mu = \lambda^2
\]
\[
r^2 R^* + r R' + \left[\lambda^2 r^2 - n^2 \right] R = 0
\]
(see section VII.12, p.507)
\[
\left[R \right]_{r=0} < \infty
\]
\[
\left[R \right]_{r=r_0} = 0
\]
\[
R_n (r) = c_{1,n} J_n (\lambda r) + c_{2,n} Y_n (\lambda r)
\]
\[
\text{general solution}
\]
\[
\left[R \right]_{r=0} < \infty \implies c_{2,n} = 0
\]
\[
R_n (r) = c_{1,n} J_n (\lambda r)
\]
\[
\left[J_n (\lambda r) \right]_{r=r_0} = 0 \implies J_n (\lambda r) = 0 \implies \lambda_{mn} \quad n = 0,1,2,...
\]
\[
m = (0), 1,2,...
\]
\[
J_n (\lambda r) = 0 \implies \lambda_{mn} \quad n = 0,1,2,...
\]
\[
m = (0), 1,2,...
\]

\(n \) comes from the order of the Bessel functions \(J_n (\lambda r) \).

Eigenvalues \(\lambda_{mn} \) should be found for each \(n = 0,1,2,... \)

\[
3^{rd} \text{ equation}
\]
\[
\beta - \frac{Z^*}{Z} = -\lambda^2_{mn}
\]
\[
\frac{Z^*}{Z} = \lambda^2_{mn} + \beta = \gamma \quad \text{combine constants to a single parameter} \ \gamma
\]
\[
Z^* - \gamma Z = 0
\]
\[
\left[Z \right]_{z=0} = 0 \quad \text{SLP} \implies \gamma = -\omega_k^2 \quad k = (0), 1,2,...
\]
\[
\left[Z \right]_{z=K} = 0 \quad Z_k (z) \quad \text{eigenfunctions}
\]

Then the second part of the last equation becomes
\[
\lambda^2_{mn} + \beta = -\omega_k^2
\]
and the constant of separation is
\[
\beta_{m,n,k} = -\left(\lambda^2_{mn} + \omega_k^2 \right)\]
Solution for $T(t)$

$$T_{mk}(t) = e^{-a(t^2 + a^2 t^2)}$$

The solution of the Basic IBVP for the Heat Equation is:

$$U(r, \theta, z, t) = \sum_{m, k} A_{mk} J_0(\lambda_{mk} r) Z_k(z) e^{-a(t^2 + a^2 t^2)} + \sum_{n=1, m} \sum_{k} \left[A_{mk} \cos(n \theta) + B_{mk} \sin(n \theta) \right] J_n(\lambda_{mk} r) Z_k(z) e^{-a(t^2 + a^2 t^2)}$$

The coefficients in this solution should be found to satisfy the initial condition:

$$U(r, \theta, z, 0) = U_0(r, \theta, z)$$

$$U_0(r, \theta, z) = \sum_{m, k} A_{mk} J_0(\lambda_{mk} r) Z_k(z) + \sum_{n=1, m} \sum_{k} A_{mk} Z_k(z) J_n(\lambda_{mk} r) \cos(n \theta) + \sum_{n=1, m} \sum_{k} B_{mk} Z_k(z) J_n(\lambda_{mk} r) \sin(n \theta)$$

The following cascade of expansions over the eigenfunctions yields equations for calculation of coefficients. First, they are calculated as the coefficients of the standard Fourier series over interval $(-\pi, \pi)$:

$$\sum_{m, k} \left[\sum_{k} A_{mk} Z_k(z) \right] J_m(\lambda_{mk} r) = \frac{2}{\pi} \int_{-\pi}^{\pi} U_0(r, \theta, z) \, d\theta$$

$$\sum_{m, k} \left[\sum_{k} A_{mk} Z_k(z) \right] J_n(\lambda_{mk} r) = \frac{1}{\pi} \int_{-\pi}^{\pi} U_0(r, \theta, z) \cos(n \theta) \, d\theta$$

$$\sum_{m, k} \left[\sum_{k} B_{mk} Z_k(z) \right] J_n(\lambda_{mk} r) = \frac{1}{\pi} \int_{-\pi}^{\pi} U_0(r, \theta, z) \sin(n \theta) \, d\theta$$

Second, as the coefficients of expansion into Fourier-Bessel series:

$$\sum_{k} A_{mk} Z_k(z) = \frac{2}{\pi} \int_{-\pi}^{\pi} U_0(r, \theta, z) J_0(\lambda_{mk} r) \, rdr \, d\theta$$

$$\sum_{k} A_{mk} Z_k(z) = \frac{1}{\pi} \int_{-\pi}^{\pi} U_0(r, \theta, z) J_n(\lambda_{mk} r) \cos(n \theta) \, rdr \, d\theta$$

$$\sum_{k} B_{mk} Z_k(z) = \frac{1}{\pi} \int_{-\pi}^{\pi} U_0(r, \theta, z) J_n(\lambda_{mk} r) \sin(n \theta) \, rdr \, d\theta$$

and, finally, by expansion into Generalized Fourier series, the coefficients for solution of the Basic IBVP are defined
Consider the Helmholtz equation which appears in the separation of variables in the Basic IBVP for the 3-D Heat Equation:

\[
\frac{\partial^2 U}{\partial r^2} + \frac{1}{r} \frac{\partial U}{\partial r} + \frac{1}{r^2} \frac{\partial^2 U}{\partial \theta^2} + \frac{\partial^2 U}{\partial z^2} = \frac{1}{\alpha} \frac{\partial U}{\partial t}
\]

\((r, \theta, z) \in (r_1, r_2) \times [0, 2\pi] \times (0, L), \quad t > 0\)

\((r, \theta, z) \in (r_1, r_2) \times [-\pi, \pi] \times (0, L)\)

Separation of variables:

\[U(r, \theta, z, t) = \Phi(r, \theta, z)T(t)\]

Separated equation:

\[
\frac{\partial^2 \Phi}{\partial r^2} + \frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \theta^2} + \frac{\partial^2 \Phi}{\partial z^2} = \frac{1}{\alpha T} \beta
\]

Separated equation yields the Helmholtz Equation:

\[
\nabla^2 \Phi = \beta
\]

The solution of the Helmholtz Equation subject to boundary conditions can be obtained by the eigenfunction expansion method.

Assume

\[\Phi(r, \theta, z) = R(r)\Theta(\theta)Z(z)\]

Substitute into the Helmholtz Equation

\[
R'' + \frac{1}{r} R' + \frac{1}{r^2} \Theta'' + \frac{Z''}{Z} = \beta
\]

boundary conditions

Separation of variables in the boundary conditions yields:

\[r = r_1 \quad [\Phi]_{r = r_1} = [R(r_1)]\Theta(\theta)Z(z) = 0 \quad \Rightarrow \quad [R]_{r = r_1} = 0\]

\[r = r_2 \quad [\Phi]_{r = r_2} = [R(r_2)]\Theta(\theta)Z(z) = 0 \quad \Rightarrow \quad [R]_{r = r_2} = 0\]

\[z = 0 \quad [\Phi]_{z = 0} = R(r)\Theta(\theta)[Z(0)] = 0 \quad \Rightarrow \quad [Z]_{z = 0} = 0\]

\[z = L \quad [\Phi]_{z = L} = R(r)\Theta(\theta)[Z(L)] = 0 \quad \Rightarrow \quad [Z]_{z = L} = 0\]

From physical consideration, we need

\[2\pi \text{-periodic solution} \quad \Phi(r, \theta + 2\pi, z) = \Phi(r, \theta + 2\pi, z) \quad \Rightarrow \quad \Theta(\theta + 2\pi) = \Theta(\theta)\]
Separate variables

\[\Theta^* = r^2 \beta - r^2 \frac{R^*}{R} - r \frac{R'}{R} - r^2 \frac{Z^*}{Z} = \eta \]

1st equation

\[\Theta^* - \eta \Theta = 0 \]

that is the SLP without boundary conditions, with condition of periodicity \(\Theta(\theta + 2\pi) = \Theta(\theta) \) (see also the section VIII.3.6).

It can be considered in the interval \(-\pi \leq \theta < \pi\) with the condition \(\Theta(-\pi) = \Theta(\pi) \).

The case \(\eta = 0 \) yields the linear solution

\[\Theta_0 = c_1 \theta + c_2 \]

The only periodic linear function is a constant function, therefore,

\[\Theta_0 = 1 \]

can be taken as an eigenfunction corresponding to \(\eta_0 = 0 \).

For positive eigenvalues, the separation constant has to be \(\eta = -\mu^2 \), then the general solution is

\[\Theta_n = c_1 \cos \mu \theta + c_2 \sin \mu \theta \]

A function with a period \(T = \frac{2\pi}{n} \) is also a \(2\pi \)-periodic. Therefore, for \(2\pi \)-periodic solution, the frequency \(\mu \) can be any positive integer

\[\mu = \frac{2\pi}{2n} = \frac{2\pi}{2\pi} n = n. \]

So, for \(\eta_n = -n^2 \), the corresponding eigenfunctions are

\[\Theta_n = c_1 \cos n \theta + c_2 \sin n \theta \]

That is consistent with the standard Fourier series over symmetric \(2\pi \)-interval \((-\pi, \pi)\), which is based on the complete set of mutually orthogonal functions:

\[\{1, \cos(n\theta), \sin(n\theta)\} \]

Therefore, solution of the first equation can be summarized as:

\[
\eta_0 = 0 \quad \Theta_0(\theta) = 1 \\
\eta_n = -n^2 \quad \Theta_n(\theta) = a_n \cos(n\theta) + b_n \sin(n\theta) \quad n = 1, 2, \ldots
\]

2nd equation

\[r^2 \beta - r^2 \frac{R^*}{R} - r \frac{R'}{R} - r^2 \frac{Z^*}{Z} = -n^2 \]

\[n = 0, 1, 2, \ldots \]

\[\frac{R^*}{R} + \frac{1}{r} \frac{R'}{R} - \frac{n^2}{r^2} = \beta - \frac{Z^*}{Z} = \mu \quad \text{separate variables} \]

\[\frac{R^*}{R} + \frac{1}{r} \frac{R'}{R} - \frac{n^2}{r^2} = \mu \quad \text{consider equation for } R \]
That is the Sturm-Liouville problem for Bessel Equation of order n

$$r^2 R'' + r R' + \left[(\lambda^2 - n^2) r \right] R = 0$$

$$\mu = -\lambda^2$$

(see section VII.12, p.515)

$$[R]_{r=0} = 0$$

$$[R]_{r=\infty} = 0$$

$$R_n(r) = c_{1,n} J_n(\lambda r) + c_{2,n} Y_n(\lambda r) \quad \text{general solution}$$

See solution of the Sturm-Liouville problem for the Bessel equation in the annular domain (Section VII.12, p.515):

For each $n = 0, 1, 2, ...$, there infinitely many eigenvalues λ_{mn} and corresponding eigenfunctions (orthogonal w.r.t weight $p(r) = r$):

$$R_{mn}(r) = c_{1,m} J_m(\lambda_{mn} r) + c_{2,m} Y_m(\lambda_{mn} r)$$

(characteristic eqn) $0 = \Rightarrow \lambda_{mn} \quad n = 0, 1, 2, ...

m = (0), 1, 2, ...

n comes from the order of the Bessel functions $J_n(\lambda r)$ and $Y_n(\lambda r)$.

Eigenvalues λ_{mn} should be found for each $n = 0, 1, 2, ...$.

The square of the norm of eigenfunctions is denoted as $\|R_{mn}(r)\|^2$

3rd equation

$$\beta - \frac{Z^*}{Z} = -\lambda_{mn}^2$$

$$\frac{Z^*}{Z} = \lambda_{mn}^2 + \beta = \gamma \quad \text{combine constants to a single parameter } \gamma$$

$$Z^* - \gamma Z = 0$$

$$[Z]_{z=0} = 0 \quad \text{SLP} \quad \Rightarrow \gamma = -\omega_k^2 \quad k = (0), 1, 2, ...$$

$$[Z]_{z=K} = 0 \quad Z_k(z) \quad \text{eigenfunctions}$$

Then the second part of the last equation becomes

$$\lambda_{mn}^2 + \beta = -\omega_k^2$$

and the constant of separation is

$$\beta_{mn} = -\left(\lambda_{mn}^2 + \omega_k^2 \right)$$
The solution of the Basic IBVP for the Heat Equation is:

\[
U(r, \theta, z, t) = \sum_{m} \sum_{k} A_{nmk} R_{nm}(\lambda_{0m}r) Z_k(z) e^{-\alpha(\lambda_{nm}^2 + \omega^2)t} + \sum_{n} \sum_{m} \sum_{k} [A_{nmk} \cos(n\theta) + B_{nmk} \sin(n\theta)] R_{nm}(\lambda_{nm}r) Z_k(z) e^{-\alpha(\lambda_{nm}^2 + \omega^2)t}
\]

The coefficients in this solution should be found to satisfy the initial condition:

\[
U(r, \theta, z, 0) = U_0(r, \theta, z)
\]

The following cascade of expansions over the eigenfunctions yields equations for calculation of coefficients.

First, they are calculated as the coefficients of the standard Fourier series over interval \((-\pi, \pi)\):

\[
\sum_{m} \left[\sum_{k} A_{nmk} Z_k(z) \right] R_{nm}(\lambda_{0m}r) = \frac{2}{\pi} \int_{-\pi}^{\pi} U_0(r, \theta, z) d\theta
\]

\[
\sum_{m} \left[\sum_{k} A_{nmk} Z_k(z) \right] R_{nm}(\lambda_{nm}r) = \frac{1}{\pi} \int_{-\pi}^{\pi} U_0(r, \theta, z) \cos(n\theta) d\theta
\]

\[
\sum_{m} \left[\sum_{k} B_{nmk} Z_k(z) \right] R_{nm}(\lambda_{nm}r) = \frac{1}{\pi} \int_{-\pi}^{\pi} U_0(r, \theta, z) \sin(n\theta) d\theta
\]

Second, as the coefficients of expansion into Fourier-Bessel series:

\[
\sum_{k} A_{nmk} Z_k(z) = \frac{2}{\pi \|R_{nm}(\lambda_{nm}r)\|} \int_{-\pi}^{\pi} \int_{0}^{L} U_0(r, \theta, z) R_{nm}(\lambda_{nm}r) Z_k(z) rdr d\theta
\]

\[
\sum_{k} A_{nmk} Z_k(z) = \frac{1}{\pi \|R_{nm}(\lambda_{nm}r)\|} \int_{-\pi}^{\pi} \int_{0}^{L} U_0(r, \theta, z) R_{nm}(\lambda_{nm}r) \cos(n\theta) rdr d\theta
\]

\[
\sum_{k} B_{nmk} Z_k(z) = \frac{1}{\pi \|R_{nm}(\lambda_{nm}r)\|} \int_{-\pi}^{\pi} \int_{0}^{L} U_0(r, \theta, z) R_{nm}(\lambda_{nm}r) \sin(n\theta) rdr d\theta
\]

and, finally, by expansion into Generalized Fourier series, the coefficients for solution of the Basic IBVP are defined

\[
A_{nmk} = \frac{2}{\pi \|R_{nm}(\lambda_{nm}r)\| \|Z_k(z)\|} \int_{0}^{L} \int_{-\pi}^{\pi} U_0(r, \theta, z) R_{nm}(\lambda_{nm}r) Z_k(z) rdr d\theta dz
\]

\[
A_{nmk} = \frac{1}{\pi \|R_{nm}(\lambda_{nm}r)\| \|Z_k(z)\|} \int_{0}^{L} \int_{-\pi}^{\pi} U_0(r, \theta, z) R_{nm}(\lambda_{nm}r) Z_k(z) \cos(n\theta) rdr d\theta dz
\]

\[
B_{nmk} = \frac{1}{\pi \|R_{nm}(\lambda_{nm}r)\| \|Z_k(z)\|} \int_{0}^{L} \int_{-\pi}^{\pi} U_0(r, \theta, z) R_{nm}(\lambda_{nm}r) Z_k(z) \sin(n\theta) rdr d\theta dz
\]
THE HEAT EQUATION

Cylindrical Coordinates

TRANSIENT PROBLEM - HE

\[\nabla^2 u + F(r, \theta, z) = \frac{1}{\alpha} \frac{\partial u}{\partial t} \]

\[[u]_s = f \]

\[[u]_z = f \]

\[[u]_{\theta} = u_0 \]

\[u(r, \theta, z, t) = u_s(r, \theta, z) + U(r, \theta, z, t) \]

STeadY STATE PROBLEM - PE

\[\nabla^2 u + F(r, \theta, z) = 0 \]

\[[u]_s = f \]

SEPARATION OF VARIABLES

\[U(r, \theta, z, t) = \Phi(r, \theta, z)T(t) \]

HELMHOLTZ EQUATION:

\[\nabla^2 \Phi = \beta \]

\[\beta_{nmk} = -\left(\lambda^2 + \omega^2 \right) \]

\[R_{nm}, \Theta_{\theta}, Z_z \]

\[\frac{1}{\alpha} \frac{T}{T} = \beta \]

\[T = e^{-\left(\lambda^2 + \omega^2 \right)t} \]

TRANSIENT SOLUTION:

\[U(r, \theta, z, t) = \Phi(r, \theta, z)T(t) \]

See p.654 for the case of solid cylinder, and p.658 for the case of hollow cylinder

SOLUTION OF IBVP

\[u(r, \theta, z, t) = u_s(r, \theta, z) + U(r, \theta, z, t) \]
VIII.3 SOLID SPHERE

Consider heat conduction in the sphere with angular symmetry:

\[\frac{\partial u}{\partial \phi} - \frac{\partial u}{\partial \theta} = 0 \]

he non-stationary temperature field \(u(r,t) \) depends only on the radial variable \(r \) and time variable \(t \).

Initial-boundary value problem:

\[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) + \frac{\dot{q}(r)}{k} = \frac{1}{\alpha \partial t} \frac{\partial u}{\partial t} \quad r \in [0,r_j] \quad t > 0 \]

initial condition:

\[u(r,0) = u_0(r) \quad r \in [0,r_j] \]

boundary conditions:

\[k \frac{\partial u}{\partial r} \bigg|_{r=r_0} = h \left(u_\infty - u|_{r=r_0} \right) \quad t > 0 \]

\[u|_{r=0} < \infty \quad t > 0 \]

where \(u_\infty \) is the ambient temperature and \(h \) is a convective coefficient.

Rewrite the boundary condition in the standard form

\[\left[\frac{\partial u}{\partial r} + \frac{h u}{k} \right]_{r=r_0} = \frac{h u_\infty}{k} \]

1) Superposition of Steady State and Transient Solutions:

\[u(r,t) = u_s(r) + U(r,t) \]

2) Steady State Solution:

\[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial u_s}{\partial r} \right) + \frac{\dot{q}(r)}{k} = 0 \]

boundary conditions:

\[\left[\frac{\partial u_s}{\partial r} + \frac{h u_s}{k} \right]_{r=r_0} = \frac{h u_\infty}{k} \quad t > 0 \]

\[u_s|_{r=0} < \infty \quad t > 0 \]

General solution:

\[u_s(r) = - \left[\frac{1}{r^2} \frac{\dot{q}(r)}{k} r^2 dr \right] \left(\frac{c_1}{r} + c_2 \right) \]

For the solid sphere (bounded solution at \(r = 0 \)):

\[u_s(r) = \left[\frac{1}{r^2} \frac{\dot{q}(r)}{k} r^2 dr \right] c_2 \]

For uniform heat generation (\(\dot{q} = \text{const} \)):

\[u_s(r) = \frac{\dot{q}}{6k} (r_j^2 - r^2) + \frac{\dot{q} r_j}{3h} + u_\infty \]
3) Transient Solution:

\[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial U}{\partial r} \right) = \frac{1}{\alpha} \frac{\partial U}{\partial t} \quad r \in [0, r_i) \quad t > 0 \]

initial condition:
\[U(r, 0) = u_i(r) - u_s(r) \quad r \in [0, r_i] \]

boundary conditions:
\[\left[\frac{\partial U}{\partial r} + \frac{h}{k} U \right]_{r=r_i} = 0 \quad t > 0 \]
\[U|_{t=0} < \infty \quad t > 0 \]

Introduce the new dependent variable (reduction to Cartesian case):
\[V(r, t) = r U(r, t) \]

Write
\[U = \frac{V}{r} \]

Evaluate l.h.s.
\[\frac{\partial}{\partial r} \left(r^2 \frac{\partial U}{\partial r} \right) = \frac{1}{r^2} V + \frac{1}{r} \frac{\partial V}{\partial r} \]
\[r^2 \frac{\partial}{\partial r} U = -V + \frac{\partial V}{\partial r} \]
\[\frac{\partial}{\partial r} \left(r^2 \frac{\partial U}{\partial r} \right) = \frac{1}{r^2} V + \frac{\partial^2 V}{\partial r^2} + r \frac{\partial^2 V}{\partial r^2} \]
\[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial U}{\partial r} \right) = \frac{1}{r} \frac{\partial^2 V}{\partial r^2} \]

Evaluate r.h.s.
\[\frac{1}{\alpha} \frac{\partial U}{\partial t} = \frac{1}{\alpha} \frac{\partial V}{\partial t} \]

Into equation:
\[\frac{r^2}{\alpha} \frac{\partial^2 V}{\partial r^2} = \frac{1}{\alpha} \frac{\partial V}{\partial t} \]

which formally is the 1-d Heat Equation for \(r \) in the finite interval \(r \in [0, r_i] \), which requires two boundary conditions.

The first condition at \(r = 0 \) is obtained directly from the equation used for a change of variable:
\[V|_{r=0} = rU|_{r=0} = 0 \quad \text{Dirichlet} \]

Consider the second boundary condition at \(r = r_i \):
\[\left[\frac{\partial U}{\partial r} + \frac{h}{k} U \right]_{r=r_i} = 0 \]
\[\left[\frac{\partial V}{\partial r} + \frac{h V}{k} \right]_{r=r_i} = 0 \]
\[
\begin{align*}
\left[\frac{1}{r} \frac{\partial V}{\partial r} + \frac{h}{k} \frac{V}{r} \right]_{r=r_1} &= 0 \\
\left[\frac{1}{r} \frac{\partial V}{\partial r} + \frac{h}{k} - \frac{l}{r} \right]_{r=r_1} &= 0 \\
\left[\frac{\partial V}{\partial r} + \frac{h}{k} - \frac{l}{r_1} \right]_{r=r_1} &= 0 \\
\left[\frac{\partial V}{\partial r} + HV \right]_{r=r_1} &= 0 \quad H = \frac{h}{k} - \frac{1}{r_1} \quad \text{Robin}
\end{align*}
\]

Initial-boundary value problem:

\[
\frac{\partial^2 V}{\partial r^2} = \frac{1}{\alpha} \frac{\partial V}{\partial t}
\]

\[V(r,0) = rU(r,0) = r\left[u_0(r) - u_s(r)\right]\]

\[V[t=0] - rU[t=0] = 0 \quad D\]

\[\left[\frac{\partial V}{\partial r} + HV \right]_{r=r_1} = 0 \quad H = \frac{h}{k} - \frac{1}{r_1} \quad R\]

4) \textbf{Sturm-Liouville Problem} corresponding to the case of Dirichlet-Robin boundary conditions (table SLP):

Eigenvalues \(\lambda_n\) are the positive roots of the equation:

\[\lambda \cos \lambda r_1 + H \sin \lambda r_1 = 0\]

Eigenfunctions \(X_n = \sin \lambda_n r\)

\[\|X_n\|^2 = \frac{r_1}{2} - \frac{\sin(2\lambda_n r_1)}{4\lambda_n}\]

Solution (see Example 2, p.?):

\[V(r,t) = \sum_{n=1}^{\infty} c_n \sin(\lambda_n r) e^{-\lambda_n^2 t}\]

\[c_n = \frac{\frac{1}{r_1} \int r\left[u_0(r) - u_s(r)\right] \sin(\lambda_n r) \, dr}{\|X_n\|^2}\]

5) Solution:

\[u(r,t) = u_s(r) + \frac{1}{r} V(r,t)\]
6) Example (turkey-3.mws) Roasting of a turkey

The turkey (W = 15 lb) is assumed to be a sphere with the uniform initial temperature
$u_0 = 10^\circ C$. It is exposed to the convective environment at $u_\infty = 150^\circ C$ with the convective
coefficient $h = 10 \frac{W}{m^2 K}$. The turkey is considered to be done when its minimum temperature
reaches $u_{\text{done}} = 75^\circ C$ (Standard for California). Thermophysical properties of turkey meat used
for calculation are from the Table (Section VIII.1.15, p.580).

```maple
> restart;with(plots):

> alpha:=0.13*10^(-6);rho:=1050;cp:=3540;k:=0.5;
   alpha := 0.13 \times 10^{-6}
   rho := 1050
   cp := 3540
   k := 0.5

> h:=10;
   h := 10

> qdot:=0.0;
   qdot := 0.

> W:=15.0;VOL:=W/rho;r1:=fsolve(4/3*Pi*r^3=VOL,r=0..1);
   W := 15.0
   VOL := 0.01428571429
   r1 := 0.1505235493

> H[2]:=h/k-1/r1;

Specified Temperatures:
> uinf:=150;ud:=75;
   uinf := 150
   ud := 75

> u0:=10;
   u0 := 10

Steady State Solution:
> us:=qdot*(r1^2-r)/6/k+qdot*r1/3/h+uinf;
   us := 150.

Transient Solution:
characteristic equation:
> w(x):=x*cos(x*r1)+H[2]*sin(x*r1);
   w(x) := x \cos(x \times 0.1505235493) + 13.35652126 \sin(0.1505235493 \times x)

> plot(w(x),x=0..50);

Eigenvalues:
> n:=1: for m from 1 to 20 do y:=fsolve(w(x)=0,x=10*m..10*(m+1)): if type(y,Float) then lambda[n]:=y: n:=n+1 fi od:
> for i to 4 do lambda[i] od;
   15.22059059
   33.80636804
   53.79455908
   74.23157321

> N:=n-1;
   N := 10
```
Eigenfunctions:
\[
X[n] := \sin(\lambda_n r);
\]
\[
X_n := \sin(\lambda_n r);
\]
\[
NX2[n] := r^{1/2} - \sin(2\lambda_n r)/4/\lambda_n;
\]
\[
NX2n := -0.07526177465 - \frac{1}{4} \sin(0.3010470986 \lambda_n^{2/3})\lambda_n^{2/3};
\]
\[
c[n] := \int_0^{r_1} (r^2(u_0 - u_s)X[n]) r dr / NX2[n];
\]
\[
u(r, t) := u_s + \frac{1}{r} \sum_{n=1}^{N} c[n] X[n] \exp(-\alpha \lambda_n^2 t), n=1..N;
\]
\[
\begin{align*}
u(r, t) & := 150. + (-14.93682091 \sin(15.22059059 r) e^{(-0.00003011662913 t)} \sin(33.80636804 r) e^{(-0.0003762010963 t)} \sin(53.79455908 r) e^{(-0.0007163423439 t)} \\ & - 1.825389731 \sin(74.23157321 r) e^{(-0.001169532629 t)} \\ & + 0.9848499073 \sin(94.84937974 r) e^{(-0.001735901602 t)} \\ & + 0.4138908063 \sin(115.5555678 r) e^{(-0.00133722283 t)} \\ & - 0.2985392385 \sin(136.3110699 r) e^{(-0.002415492011 t)} \\ & + 0.2252900588 \sin(157.0967601 r) e^{(-0.003208320964 t)} \\ & - 0.1759525722 \sin(177.9022284 r) e^{(-0.004114396373 t)} \\ & + 0.1411724164 \sin(198.7213411 r) e^{(-0.00513372283 t)} \right) / r
\end{align*}
\]

Solution:

Symmetric Extension:
\[
u_2(r, t) := \text{subs}(r=-r, u(r, t));
\]
\[
t1 := 0.5*60*10: t2 := 3*60*60: t3 := 7*60*60: t4 := 9*60*60:
\]
\[
z1 := \text{subs}(t=t1, u2(r, t)): z2 := \text{subs}(t=t2, u2(r, t)): z3 := \text{subs}(t=t3, u2(r, t)): z4 := \text{subs}(t=t4, u2(r, t)):
\]
\[
\text{plot}([u_0, u_s, u_d, z1, z2, z3, z4], r=-r1..r1, color=black, axes=boxed);
\]

Temperature at the center:
\[
uc := \text{limit}(u_2(r, t), r=0);
\]
\[
uc := 150. - 227.3472358 e^{(-0.0003011662913 t)} + 35.39233832 e^{(-0.0003208320964 t)} \\ + 144.3656753 e^{(-0.0001485731676 t)} - 31.30235469 e^{(-0.00014396373 t)} \\ - 98.19603573 e^{(-0.0007163423439 t)} + 28.05397191 e^{(-0.00133722283 t)} \\ + 73.10695799 e^{(-0.001735901602 t)} - 57.90413928 e^{(-0.001169532629 t)} \\ + 47.82738713 e^{(-0.001735901602 t)} - 40.69420301 e^{(-0.0003208320964 t)}
\]
\begin{align*}
 \text{animate} & \left(\{ u_2(r,t), u_c, u_0, u_s \}, r = -r_1 \ldots r_1, t = 0 \ldots 11 \times 3600, \text{frames} = 200, \text{axes} = \text{boxed} \right); \\
 \text{plot} & \left(\{ u_c, u_0, u_d \}, t = 0 \ldots 12 \times 3600, \text{axes} = \text{boxed}, \text{color} = \text{black} \right); \\
 \end{align*}
VIII.3.4.2 Heat Equation in Spherical Coordinates: \(u(r, \phi, \theta, t) \)

\[
\frac{\partial^2 u}{\partial r^2} + 2r \frac{\partial u}{\partial r} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial u}{\partial \phi} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial \phi^2} + \frac{g}{k} = \frac{1}{\alpha} \frac{\partial u}{\partial t}
\]

1) Sphere with angular symmetry \(\left(\frac{\partial u}{\partial \phi} = 0 \right) \):

\[
\frac{\partial^2 u}{\partial r^2} + 2r \frac{\partial u}{\partial r} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial u}{\partial \phi} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 u}{\partial \theta^2} + \frac{g}{k} = \frac{1}{\alpha} \frac{\partial u}{\partial t}
\]

Example: Floating ball

2) Spherical surface of fixed radius \(r \) \(\left(\frac{\partial u}{\partial r} = 0 \right) \):

\[
\frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial u}{\partial \phi} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 u}{\partial \theta^2} + \frac{g}{k} = \frac{1}{\alpha} \frac{\partial u}{\partial t}
\]

Example: Diffusion of foreign mint coins in France
Consider a BVP generated by separation of variables in a PDE in spherical coordinates. We will only see what the Sturm-Liouville problems are in this case.

1. Laplace’s Equation

Recall the general form of Laplace’s Equation in spherical coordinates for the function $u(r, \theta, \phi)$, $r \in D$:

$$\frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 u}{\partial \phi^2} + \frac{1}{r^2 \sin \theta} \frac{\partial^2 u}{\partial \theta^2} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \phi^2} = 0 \quad (1)$$

or with differential operators written in self-adjoint form:

$$\frac{\partial}{\partial r} \left[r^2 \frac{\partial u}{\partial r} \right] + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 u}{\partial \phi^2} + \frac{\cos \theta}{\sin \theta} \frac{\partial u}{\partial \theta} + \frac{\partial^2 u}{\partial \theta^2} = 0 \quad (2)$$

separation of variables

Assume

$$u(r, \theta, \phi) = R(r) \Phi(\phi) \Theta(\theta) \quad (3)$$

Substitute into equation (1)

$$R'' \Phi \Theta + \frac{2}{r} R' \Phi \Theta + \frac{1}{r^2 \sin^2 \theta} R \Phi'' \Theta + \frac{1}{r^2 \sin \theta} R \Phi \Theta' + \frac{1}{r^2} R \Phi \Theta'' = 0$$

Multiply the equation by $\frac{r^2}{R \Phi \Theta}$

$$\frac{r^2}{R} R'' + 2 \frac{r}{R} R' + \frac{1}{r^2 \sin^2 \theta} \frac{\Phi''}{\Phi} + \frac{\cos \theta}{\sin \theta} \frac{\Theta'}{\Theta} + \frac{\Theta''}{\Theta} = 0$$

Consider the axisymmetric case ($\frac{\partial}{\partial \phi} = 0$):

$$\frac{r^2}{R} R'' + 2 \frac{r}{R} R' + \frac{\cos \theta}{\sin \theta} \frac{\Theta'}{\Theta} + \Theta'' = 0$$

Separate variables and set both sides of the equation equal to the same constant

$$\frac{r^2}{R} R'' + 2 \frac{r}{R} R' = -\frac{\cos \theta}{\sin \theta} \frac{\Theta'}{\Theta} - \frac{\Theta''}{\Theta} = \mu$$

It yields two equations:

1) $r^2 \frac{R''}{R} + 2r \frac{R'}{R} = \mu$

which can be rewritten in the form

$$r^2 R'' + 2r R' - \mu R = 0$$

(Euler-Cauchy equation)

or in the self-adjoint Sturm-Liouville form

$$-\frac{1}{l} \left(r^2 R' \right)' = (-\mu) R \quad (4)$$

Solutions of this equation are sought in the form $R = r^\alpha$
2) \[\Theta'' + \frac{\cos \theta}{\sin \theta} \Theta' + \mu \Theta = 0 \]

Use change of independent variable \(x = \cos \theta \), then
\[
\Theta' = \frac{d}{d\theta} \left(\frac{d\Theta}{dx} \right) = \frac{d}{d\theta} \left(-\sin \theta \frac{d\Theta}{dx} \right) = -\cos \theta \frac{d\Theta}{dx} - \sin \theta \frac{d}{dx} \left(\frac{d\Theta}{dx} \right)
\]
\[
\Theta'' = \frac{d^2}{d\theta^2} \left(\frac{d\Theta}{dx} \right) = \frac{d}{d\theta} \left(-\cos \theta \frac{d\Theta}{dx} - \sin \theta \frac{d}{dx} \left(\frac{d\Theta}{dx} \right) \right)
\]
\[
\Theta'' = -\cos \theta \frac{d^2\Theta}{dx^2} - \sin \theta \frac{d}{dx} \left(\frac{d\Theta}{dx} \right) \frac{dx}{d\theta} = -\cos \theta \frac{d^2\Theta}{dx^2} + \sin^2 \theta \frac{d^2\Theta}{dx^2}
\]
Substitute into equation
\[
-\cos \theta \frac{d^2\Theta}{dx^2} + \sin^2 \theta \frac{d^2\Theta}{dx^2} - \frac{\cos \theta}{\sin \theta} \frac{d^2\Theta}{dx^2} + \mu \Theta = 0
\]
\[
sin^2 \theta \frac{d^2\Theta}{dx^2} - 2\cos \theta \frac{d\Theta}{dx} + \mu \Theta = 0
\]
\[
(1-x^2) \frac{d^2\Theta}{dx^2} - 2x \frac{d\Theta}{dx} + \mu \Theta = 0
\]
or in self-adjoint Sturm-Liouville form:
\[
-\frac{d}{dx} \left[(1-x^2) \frac{d\Theta}{dx} \right] = \mu \Theta
\]
(5)
This equation is called Legendre’s differential equation. It happens that its solution is bounded only if the separation constant is a non-negative integer of the form
\[
\mu = n(n+1) \quad n = 0,1,2,...
\]
Its solution consists of Legendre polynomials \(P_n(x) \) (see Sec. 5.7).

2. Heat Equation

Consider the axisymmetric heat equation for \(u(r,t) \), \(r \in D \), \(t > 0 \) in spherical coordinates:
\[
\frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} + \alpha^2 \frac{\partial u}{\partial t} = a^2 \frac{\partial u}{\partial t}
\]
(6)

Separation of variables

\[
u(r,t) = R(r) T(t)
\]
Substitute into equation (6)
\[
R'' + \frac{2}{r} R' = a^2 R T''
\]
divide by \(R T' \) and separate variables
\[
\frac{R''}{R} + \frac{2}{r} \frac{R'}{R} = a^2 \frac{T'}{T} = \mu
\]
It yields two ordinary differential equations. Equation for \(R \) is
\[
r^2 R'' + 2r R' - \mu r^2 R = 0
\]
(7)
which is a spherical Bessel equation of zero order (see equation (25) in Sec. 5.6 with \(n = 0 \), AAEM-II).

Eigenvalue problem:
\[
LR \equiv \frac{1}{r^2} (r^2 R')' = \mu R
\]
Its solutions are given by spherical Bessel functions
\[
\begin{align*}
j_0(r) &= \sqrt{\frac{\pi}{2}} \frac{J_{\frac{3}{2}}(r)}{\sqrt{r}} \\
y_0(r) &= \sqrt{\frac{\pi}{2}} \frac{Y_{\frac{3}{2}}(r)}{\sqrt{r}}
\end{align*}
\]
Why we cannot be completely satisfied with the method of separation of variables?

How about the time dependent boundary conditions, for example?
VIII.3.5 WAVE EQUATION

VIII.3.5.1 1-D Cartesian

homogeneous equation with homogeneous boundary conditions

\[
\frac{\partial^2 u}{\partial x^2} = \frac{1}{a^2} \frac{\partial^2 u}{\partial t^2} \\
u(x,t), \ x \in (0,L), \ t > 0
\]

Initial conditions:

\[
u(x,0) = u_0(x)\]
\[
\frac{\partial u(x,0)}{\partial t} = u_1(x)
\]

Boundary conditions:

\[
u(0,t) = 0, \quad t > 0 \quad (I)
\]
\[
k_2 \frac{\partial u(L,t)}{\partial x} + h_2 u(x,t) = 0, \ t > 0 \quad (III)
\]

Denote \(H_2 = \frac{h_2}{k_2} \)

1. Separation of variables

we assume that the function \(u(x,t) \) can be represented as a product of two functions each of a single variable

\[
u(x,t) = X(x)T(t)
\]

\[
\frac{\partial^2 u}{\partial x^2} = X''(x)T(t) \quad \frac{\partial^2 u}{\partial t^2} = X(x)T''(t)
\]

After separation of variables, one gets

\[
a^2 X''(x)T(t) = X(x)T''(t)
\]

That yields two ordinary differential equations:

\[
X'' - \mu X = 0 \quad \text{and} \quad T'' - \mu a^2 T = 0
\]

2. Sturm-Liouville problem

\[
X'' - \mu X = 0
\]

boundary conditions:

\[
x = 0: X(0)T'(0) = 0 \quad \Rightarrow \quad X(0) = 0
\]
\[
x = L: X'(L)T(L) + H_2 X(L)T'(L) = 0 \quad \Rightarrow \quad X'(L) + H_2 X(L) = 0
\]

This Sturm-Liouville problem has the following solution with \(\mu_n = -\lambda_n^2 \):

eigenvalues

\(\lambda_n \) are positive roots of equation \(\lambda \cos \lambda L + H_2 \sin \lambda L = 0 \)

eigenfunctions

\[
X_n(x) = \sin \lambda_n x
\]

Then solutions of the second differential equation \(T'' + \lambda_n^2 a^2 T = 0 \) are

\[
T_n(t) = c_1 \cos \lambda_n at + c_2 \sin \lambda_n at
\]

basic solutions:

\[
u_n(x,t) = X_n T_n = \sin \lambda_n x(c_1 \cos \lambda_n at + c_2 \sin \lambda_n at)
\]
We are looking for a solution in the vector space with the basis \(\{ u_n(x, t) \} \):

\[
\begin{align*}
 u(x, t) &= \sum_{n=1}^{\infty} a_n u_n(x, t) = \sum_{n=1}^{\infty} a_n \sin \lambda_n x (c_1 \cos \lambda_n at + c_2 \sin \lambda_n at) \\
 u(x, t) &= \sum_{n=1}^{\infty} \sin \lambda_n x (a_n c_1 \cos \lambda_n at + a_n c_2 \sin \lambda_n at) \\
 u(x, t) &= \sum_{n=1}^{\infty} \sin \lambda_n x (b_n \cos \lambda_n at + d_n \sin \lambda_n at)
\end{align*}
\]

Initial conditions: \(t = 0 \)

\[
\begin{align*}
 u(x, 0) &= \sum_{n=1}^{\infty} b_n \sin \lambda_n ax = u_0(x)
\end{align*}
\]

which is a generalized Fourier series expansion of the function \(f(x) \) over the interval \((0, L)\) with coefficients

\[
 b_n = \frac{\int_0^L u_0(x) \sin \lambda_n x \, dx}{\int_0^L \sin^2 \lambda_n x \, dx} = \frac{\int_0^L u_0(x) \sin \lambda_n x \, dx}{L^2/2 - \frac{\sin 2 \lambda_n L}{4 \lambda_n}}
\]

The derivative with respect to \(t \) of the assumed solution is

\[
 \frac{\partial u(x, t)}{\partial t} = \sum_{n=1}^{\infty} \lambda_n \sin \lambda_n x \left(-b_n \sin \lambda_n at + d_n \cos \lambda_n at\right)
\]

Then the second initial condition yields

\[
 t = 0 \quad \frac{\partial u(x, 0)}{\partial t} = \sum_{n=1}^{\infty} d_n \lambda_n a \sin \lambda_n x = u_t(x)
\]

Again, it can be treated as a Fourier series with coefficients

\[
 d_n \lambda_n a = \frac{\int_0^L u_0(x) \sin \lambda_n x \, dx}{\int_0^L \sin^2 \lambda_n x \, dx} = \frac{\int_0^L u_0(x) \sin \lambda_n x \, dx}{L^2/2 - \frac{\sin 2 \lambda_n L}{4 \lambda_n}}
\]

\[
 d_n = \frac{\int_0^L u_1(x) \sin \lambda_n x \, dx}{\lambda_n a \left(\frac{L}{2} - \frac{\sin 2 \lambda_n L}{4 \lambda_n}\right)}
\]

Then the solution of the initial-boundary value problem is:

3. **Solution**

\[
 u(x, t) = \sum_{n=1}^{\infty} \left[b_n \cos \left(\lambda_n at \right) + d_n \sin \left(\lambda_n at \right) \right] \sin (\lambda_n x)
\]

\[
 = \sum_{n=1}^{\infty} \frac{\sin \lambda_n x}{\left(\frac{L}{2} - \frac{\sin 2 \lambda_n L}{4 \lambda_n}\right)} \left[\int_0^L u_0(x) \sin \lambda_n x \, dx \right] \cos \lambda_n at + \left[\int_0^L u_1(x) \sin \lambda_n x \, dx \right] \frac{\lambda_n a}{\lambda_n a} \sin \lambda_n at
\]

4. Normal modes of string vibration

Solution of the Wave Equation is obtained as a sum of terms of the form

\[u_n(x,t) = X_n T_n = \sin \lambda_n x (c \cos \lambda_n at + d \sin \lambda_n at) \]

which we called the basic solutions, but as the contributors to the vibration of string, these functions are known as normal modes. In our example, for \(n = 1, 2, 3, 4, \ldots \) they have the following shape (see Maple file for animation):

\[m_1 := \text{subs}(n=1, X[n]*(b[n]*\cos(\lambda[n]*a*t) + d[n]*\sin(\lambda[n]*a*t))): \]
\[\text{animate}((m_1), x=0..L, t=0..9); \]

fundamental mode

\[m_2 := \text{subs}(n=2, X[n]*(b[n]*\cos(\lambda[n]*a*t) + d[n]*\sin(\lambda[n]*a*t))): \]
\[\text{animate}((m_2), x=0..L, t=0..9); \]

first overtone

\[m_3 := \text{subs}(n=3, X[n]*(b[n]*\cos(\lambda[n]*a*t) + d[n]*\sin(\lambda[n]*a*t))): \]
\[\text{animate}((m_3), x=0..L, t=0..9); \]

second overtone

\[m_4 := \text{subs}(n=4, X[n]*(b[n]*\cos(\lambda[n]*a*t) + d[n]*\sin(\lambda[n]*a*t))): \]
\[\text{animate}((m_4), x=0..L, t=0..9); \]

third overtone

The first of these normal modes is called the fundamental mode, others are called the first overtone, the second overtone, and so on. The frequency of oscillation of the normal mode is increased with its number and is determined by the corresponding eigenvalue \(\lambda_n \) and coefficient \(a \) which has a physical sense of the speed of propagation of the waves (speed of sound). There are fixed points in the vibration of overtones.

overtones

The whole motion of the string is a superposition of vibration of all overtones with different amplitude. The involvement of different modes in the vibration of string is determined by initial conditions. If for representation of the initial shape of the string at rest, different modes are required, then all of them will be present in the undamped vibration of the string. But if the initial shape of the string is exactly one of the overtones, then only this mode will be present the string vibration. This phenomenon is called standing waves. Standing waves do not propagate, only shrink and swell in the same shape.

standing waves
VIII.3.5.2 1-D polar coordinates

Wave Equation in polar coordinates with angular symmetry

\[
\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{a^2} \frac{\partial^2 u}{\partial t^2} = u(r,t), \quad r \in [0, r_1], \quad t > 0
\]

Initial conditions: \(u(r,0) = u_0(r) \)
\[
\frac{\partial u(r,0)}{\partial t} = u_i(r)
\]

Boundary condition: \(u(r_1,t) = 0 \quad t > 0 \) (Dirichlet)

1. Separation of variables

Assume
\[u(r, \theta) = R(r)T(t) \]
then
\[
\frac{\partial u}{\partial r} = R'(r)T(t), \quad \frac{\partial^2 u}{\partial r^2} = R''(r)T(t), \quad \frac{\partial^2 u}{\partial t^2} = R(r)T''(t).
\]

Substitute into the equation
\[
R''(r)T(t) + \frac{1}{a^2} R(r)T''(t) = \frac{1}{a^2} R(r)T''(t)
\]

After separation of variables (division by \(R(t)T(t)\)), we receive
\[
\frac{R''}{R} + \frac{1}{r} \frac{R'}{R} = \frac{1}{a^2} \frac{T''}{T} = \mu \quad \text{with a separation constant } \mu
\]

it yields two ordinary differential equations:

\[
R'' - \mu R = 0
\]

boundary condition

\[
r = r_1, \quad u(r_1,t) = R(r_1)T(t) = 0 \Rightarrow R(r_1) = 0
\]

2. Solution of Sturm-Liouville problem

Consider first the boundary value problem from which we expect to obtain eigenvalues and eigenfunctions for construction of a functional vector space. Consider the equation for \(R(r)\) for which we have a homogeneous boundary condition:
\[
R'' + \frac{1}{r} R' - \mu R = 0 \quad R(r_1) = 0
\]

Multiplication by \(r^2\) yields
\[
r^2 R'' + r R' - \mu r^2 R = 0
\]

Solution of this equation depends on the form of the separation constant

\[
R(r) = \begin{cases}
 d_1 J_0(\lambda r) + d_2 Y_0(\lambda r) & \mu > 0 \quad \mu = \lambda^2 \\
 d_1 \ln r + d_2 & \mu = 0 \\
 d_3 J_0(\lambda r) + d_4 Y_0(\lambda r) & \mu < 0 \quad \mu = -\lambda^2
\end{cases}
\]

See, how these solutions were obtained and how the boundary condition can be satisfied:

1) \(\mu > 0\) Denote \(\mu = \lambda^2\). Then the equation becomes
\[
r^2 R'' + r R' - \left(\lambda^2 r^2 + 0^2\right) R = 0
\]
This is a modified Bessel equation of integer order θ for the independent variable $x = \lambda r$. General solution of this equation is given by

$$ R(r) = d_1 J_\theta(\lambda r) + d_2 K_\theta(\lambda r) $$

At the interior point of the membrane $r = 0$, the solution has to be finite, therefore, we require the coefficient d_2 before function $K_\theta(\lambda r)$ (which is unbounded at $r = 0$) to be equal to zero, $d_2 = 0$.

Consider the boundary condition:

$$ r = r_1, \quad R(0) = d_1 J_\theta(0) = d_1 = 0 $$

Therefore, the case $\mu > 0$ leads to a trivial solution.

2) $\mu = 0$

Equation becomes

$$ R^* + \frac{1}{r} R' = 0 $$

The order of equation can be reduced by a change of independent variable $\bar{R} = R'$. The equation for \bar{R} is a first order linear differential equation

$$ \bar{R}' + \frac{1}{r} \bar{R} = 0 $$

solution of which is obtained with the help of an integrating factor

$$ \bar{R}(r) = d_1 \left(e^{\frac{1}{r^2}} \right)^{-1} = d_1 \left(e^{\frac{\theta}{r}} \right)^{-1} = d_1 \left(e^{\frac{1}{r}} \right)^{-1} = \frac{d_1}{r} $$

Then the solution of the original equation is

$$ R(r) = \int \bar{R}(r) dr = \int \frac{d_1}{r} dr = d_1 \ln r + d_2 $$

To have a finite solution at point $r = 0$, we must put $d_1 = 0$.

Then the boundary condition leads to $d_2 = 0$, and we end up with a trivial solution.

3) $\mu < 0$

Denote $\mu = -\lambda^2$. Then the equation becomes

$$ r^2 R^* + r R' + \left(\lambda^2 r^2 - \theta^2 \right) R = 0 $$

which we can identify as a Bessel equation of order θ. The general solution of Bessel equation of integer order is given by

$$ R(r) = d_1 J_\theta(\lambda r) + d_2 Y_\theta(\lambda r) $$

where $J_\theta(\lambda r)$ and $Y_\theta(\lambda r)$ are, correspondingly, Bessel’s functions of the 1st and the 2nd kind of zero order.

Before considering the boundary condition, we can make one observation.

The deflection of membrane anywhere in the domain $r \in [0, r_1]$ is assumed to be finite (moreover, the wave equation is derived in the assumption of small deflection). The Bessel function of the 2nd kind $Y_\theta(\lambda r)$ approaches $-\infty$ when r goes to 0. In our case, $r = 0$ is the interior point of the membrane. Therefore, for function $R(r)$ to be bounded at $r = 0$, the coefficient d_2 should be equal to 0. Then solution of the Bessel equation becomes

$$ R(r) = d_1 J_\theta(\lambda r) $$

The boundary condition implies

$$ R(r_1) = d_1 J_\theta(\lambda r_1) = 0 $$

If we want a non-trivial solution, then $d_1 \neq 0$, and we receive

$$ J_\theta(\lambda r_1) = 0 $$
The figure shows the graph of the function \(w(\lambda) = J_0(\lambda r) \) with \(r = 1 \)

The roots of the equation \(\lambda_1, \lambda_2, \ldots \) are the values of the parameter \(\lambda \) for which the boundary value problem has a non-trivial solution (they are called eigenvalues).

The corresponding solutions (eigenfunctions) are

\[R_n(r) = J_0(\lambda_n r) \]

To determine the weight function, transform the Bessel equation to the self-adjoint form of the Sturm-Liouville problem (11.6 problem #40).

Find the integrating factor

\[m(r) = \int r^2 e^\frac{-\lambda}{r} \, dr = \frac{1}{r} \]

and reduce the equation to the self-adjoint form

\[-\frac{1}{r} [r R']' = \lambda^2 R \]

Then, according to the Sturm-Liouville theorem, the set of functions \(R_n = \{ J_0(\lambda_n r) \} \) \(n = 1, 2, \ldots \)

is a complete set of functions orthogonal with respect to weight \(r \) over interval \([0, r_0] \), e.g.

\[\int_0^{r_0} r R_n(r) R_m(r) \, dr = 0 \quad \text{when} \quad n \neq m \]

solution for T

The result of a negative separation constant \(\mu = -\lambda^2 \) agrees with a physical sense of solution for \(T(t) \):

\[T'' - \mu a^2 T = 0 \quad T(t) = \begin{cases} \ c_1 e^{\sqrt{-\mu} at} + c_2 e^{-\sqrt{-\mu} at} & \mu > 0 \\ \ c_1 + c_2 t & \mu = 0 \\ \ c_1 \cos \sqrt{-\mu} at + c_2 \sin \sqrt{-\mu} at & \mu < 0 \end{cases} \]

We expect a periodic solution for an undamped vibration of membrane. There should be no constant terms either because boundary conditions and the equation are homogeneous. Therefore, only the case of a negative separation constant may be accepted for our problem, \(\mu = -\lambda^2 \) (or positive eigenvalues). Then solutions \(T_n(t) \) with determined eigenvalues are

\[T_n(t) = c_{1,n} \cos \lambda_n at + c_{2,n} \sin \lambda_n at \]

3. Basic solutions

For basis functions we take the solutions of the wave equation satisfying boundary conditions

\[u_n(r, t) = J_0(\lambda_n r) \left(c_{1,n} \cos \lambda_n at + c_{2,n} \sin \lambda_n at \right) \]

We are looking for solution of the given i.b.v.p. in the vector space spanned by this basis:
\[u(r,t) = \sum_{n=0}^{\infty} a_n J_0(\lambda_n r) \left(c_{1,n} \cos \lambda_n at + c_{2,n} \sin \lambda_n at \right) \]

\[= \sum_{n=0}^{\infty} J_0(\lambda_n r) \left(a_n c_{1,n} \cos \lambda_n at + a_n c_{2,n} \sin \lambda_n at \right) \]

\[= \sum_{n=0}^{\infty} J_0(\lambda_n r) \left(b_{1,n} \cos \lambda_n at + b_{2,n} \sin \lambda_n at \right) \]

We will choose the values of coefficients in such a way that initial conditions are satisfied.

4. Initial conditions

Consider the first initial condition

\[u(r,0) = \sum_{n=1-l}^{\infty} b_{1,n} J_0(\lambda_n r) = u_0(r) \]

then coefficients for the generalized Fourier series are defined as

\[b_{1,n} = \frac{\int_0^r r u_0(r) J_n(\lambda_n r) \, dr}{\int_0^r r J_n(\lambda_n r) \, dr} \]

The second condition for the derivative with respect to time

\[\frac{\partial u(r,t)}{\partial t} = \sum_{n=1-l}^{\infty} J_0(\lambda_n r) \left(-b_{1,n} \lambda_n a \sin \lambda_n at + b_{2,n} \lambda_n a \cos \lambda_n at \right) \]

becomes

\[\frac{\partial u(r,0)}{\partial t} = \sum_{n=1-l}^{\infty} b_{2,n} \lambda_n a J_0(\lambda_n r) = u_1(r) \]

Then coefficients in this generalized Fourier expansion are

\[b_{2,n} \lambda_n a = \frac{\int_0^r r u_1(r) J_0(\lambda_n r) \, dr}{\int_0^r r J_0(\lambda_n r) \, dr} \implies b_{2,n} = \frac{\int_0^r r u_1(r) J_0(\lambda_n r) \, dr}{\lambda_n a \int_0^r J_0^2(\lambda_n r) \, dr} \]

Then solution of the initial-boundary value problem for the wave equation is

5. Solution

\[u(r,t) = \sum_{n=1-l}^{\infty} J_0(\lambda_n r) \left(b_{1,n} \cos \lambda_n at + b_{2,n} \sin \lambda_n at \right) \]

\[= \sum_{n=1-l}^{\infty} \frac{\int_0^r r u_0(r) J_0(\lambda_n r) \, dr}{\int_0^r r J_0(\lambda_n r) \, dr} \cos \lambda_n at + \left[\frac{1}{\lambda_n a} \int_0^r r u_1(r) J_0(\lambda_n r) \, dr \right] \sin \lambda_n at \]
SINGULAR STURM-LIOUVILLE PROBLEM

We studied a regular Sturm-Liouville Problem in which the ordinary differential equation is set in the finite interval and both boundary conditions do not vanish. In a singular Sturm-Liouville problem not all of these conditions hold. Usually, the interval is not finite, and one or both boundary conditions are missing. Instead of boundary conditions, when the solution may not exist at the boundaries, the eigenfunctions should satisfy some limiting conditions. One of such requirements can be the following:

Let \(y_i \) and \(y_2 \) be eigenfunctions corresponding to two distinct eigenvalues \(\lambda_i \) and \(\lambda_2 \), correspondingly. Then they have to satisfy the following condition:

\[
\lim_{x \to a^+} p(x) \left[y_i(x) y_i'(x) - y_2(x) y_2'(x) \right] = \lim_{x \to a^-} p(x) \left[y_i(x) y_i'(x) - y_2(x) y_2'(x) \right]
\]

In the other cases the absence of boundary conditions is because of the periodical or cycled domain, when we demand that the solution should be continuous and smooth \(y(x_1) = y(x_2) \) and \(y'(x_1) = y'(x_2) \).

In this case, it is still possible to have the orthogonal set of solutions \(\{ y_n(x) \} \) on \([x_1, x_2]\).

We will not study the formal approach to solution of such problems, but rather discuss the practical examples of its application.

Here, we consider an interesting example of a singular SLP in a cycled domain with no boundary conditions. Physical demonstration of this example can be seen on the ceiling of the hall of the Eyring Science Building.

Example 1
Consider vibration of a thin closed ring string of radius \(r \) described in polar coordinates by deflection over the plane \(z = 0 \)

\(u(\theta, t), \ \theta \in [0, 2\pi], \ t > 0 \)

The Wave Equation reduces to

\[
\frac{1}{r} \frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial \theta^2} \quad r = \text{const}
\]

with initial conditions

\(u(\theta, 0) = u_0(\theta) \)

\(\frac{\partial u}{\partial t}(\theta, 0) = u_1(\theta) \)

There are no boundaries for a closed string, but rather a physical condition for a continuous and smooth string:

\(u(0, t) = u(2\pi, t) \quad t > 0 \)

\(\frac{\partial u}{\partial \theta}(0, t) = \frac{\partial u}{\partial \theta}(2\pi, t) \quad t > 0 \)

separation of variables

Assume \(u(\theta, t) = \Theta(\theta) \ T(t) \)

Substitute into equation \(\frac{1}{r^2} \Theta'' T = a^2 \Theta' T' \)

Separate variables \(\frac{\Theta''}{\Theta} = \frac{a^2 r^2 T''}{T} = \mu \quad \mu \text{ is a separation constant} \)

Consider \(\frac{\Theta''}{\Theta} = \mu \)

\(\Theta'' - \mu \Theta = 0 \)

We already have experience with solution of this special equation for regular Sturm-Liouville Problems and know that in all cases except the case of both boundary conditions of Neumann type, only a negative separation constant,
\(\mu = -\lambda^2 \), generates eigenvalues and eigenfunctions. General solution in this case is
\[
\Theta(\theta) = c_1 \cos \lambda \theta + c_2 \sin \lambda \theta
\]
This solution suits our problem because it is periodic. The values of \(\lambda \) which satisfy periodicity on the interval \(\theta \in [0, 2\pi] \), are
\[
\lambda_n = \frac{2n\pi}{2\pi} = n
\]
Therefore, solutions are
\[
\Theta_n(\theta) = c_{1,n} \cos n\theta + c_{2,n} \sin n\theta
\]
Obviously, that for all \(n = 0,1,2,\ldots \), \(2\pi \) is a period for this solution and for its derivative
\[
\Theta'_n(\theta) = -c_{1,n} n \sin n\theta + c_{2,n} n \cos n\theta
\]
With these values of the separation constant, \(\mu_n = -\lambda_n^2 = -n^2 \), \(n = 0,1,2,\ldots \), consider the equation for \(T(t) \):
\[
a^2 r^2 T'' - T'' = -n^2
\]
\[
T'' + \frac{n^2}{a^2 r^2} T = 0
\]
which also has a periodic (in \(t \)) general solution
\[
T_n(t) = c_{3,n} \cos \frac{n}{ar} t + c_{4,n} \sin \frac{n}{ar} t
\]
Then periodic solution of the wave equation can be constructed in the form of an infinite series:
\[
u(\theta, t) = \Theta(\theta) T(t) = \sum_{n=0}^\infty \Theta_n(\theta) T_n(t)
\]
\[
= \sum_{n=0}^\infty \left(c_{1,n} \cos n\theta + c_{2,n} \sin n\theta \right) \left(c_{3,n} \cos \frac{n}{ar} t + c_{4,n} \sin \frac{n}{ar} t \right)
\]
\[
= \sum_{n=0}^\infty \left(c_{1,n} c_{3,n} \cos \frac{n}{ar} t + c_{1,n} c_{4,n} \cos n\theta \cos \frac{n}{ar} t + c_{2,n} c_{3,n} \sin \frac{n}{ar} t + c_{2,n} c_{4,n} \sin n\theta \sin \frac{n}{ar} t \right)
\]
\[
= \sum_{n=0}^\infty \left(b_{1,n} \cos \frac{n}{ar} t + b_{2,n} \cos n\theta \cos \frac{n}{ar} t + b_{3,n} \sin \frac{n}{ar} t + b_{4,n} \sin n\theta \sin \frac{n}{ar} t \right)
\]
where coefficients \(b \) are new arbitrary constants which can be chosen in such a way that this solution will satisfy the initial conditions.
Consider the first initial condition:
\[
t = 0 \quad u(\theta, 0) = u_0(\theta) = \sum_{n=0}^\infty \left(b_{1,n} \cos n\theta + b_{3,n} \sin n\theta \right)
\]
\[
= b_{1,0} + \sum_{n=1}^\infty \left(b_{1,n} \cos n\theta + b_{3,n} \sin n\theta \right)
\]
which can be treated as a standard Fourier series expansion of the function \(u_0(\theta) \) on the interval \([0, 2\pi] \). Therefore, the coefficients of this expansion are
\[
b_{1,0} = \frac{1}{2\pi} \int_0^{2\pi} u_0(\theta) d\theta
\]
\[
b_{1,n} = \frac{1}{\pi} \int_0^{2\pi} u_0(\theta) \cos n\theta d\theta
\]
\[
b_{3,n} = \frac{1}{\pi} \int_0^{2\pi} u_0(\theta) \sin n\theta d\theta
\]
For the second initial condition, differentiate the solution first with respect to t

$$\frac{\partial u}{\partial t}(\theta, t) = \sum_{n=0}^{\infty} \left(-b_{1,n} \frac{n}{ar} \cos n\theta \sin \frac{n}{ar} t + b_{2,n} \frac{n}{ar} \cos n\theta \cos \frac{n}{ar} t - b_{3,n} \frac{n}{ar} \sin n\theta \sin \frac{n}{ar} t + b_{4,n} \frac{n}{ar} \sin n\theta \cos \frac{n}{ar} t \right)$$

then apply the second initial condition

$$\frac{\partial u}{\partial t}(\theta, 0) = u_1(\theta) = \sum_{n=0}^{\infty} \left(b_{2,n} \frac{n}{ar} \cos n\theta t + b_{4,n} \frac{n}{ar} \sin n\theta \right)$$

Where the coefficients are determined as

$$b_{2,0} = \frac{1}{2\pi} \int_{0}^{2\pi} u_1(\theta) d\theta$$

$$b_{2,n} = \frac{ar}{n} \int_{0}^{\pi} u_1(\theta) \cos n\theta d\theta$$

$$b_{4,n} = \frac{ar}{n} \int_{0}^{\pi} u_1(\theta) \sin n\theta d\theta$$

Coefficient $b_{2,0}$ can be any constant, it will not influence the initial speed of the string, but not to influence the initial shape of the string it has to be chosen equal to zero (otherwise, initially the string will shifted by $b_{2,0}$ and will not be centered over the plane $z = 0$):

$$b_{2,0} = 0$$

Therefore, solution of the problem is given by the infinite series

$$u(\theta, t) = b_{1,0} + \sum_{n=1}^{\infty} \left(b_{1,n} \cos n\theta \cos \frac{n}{ar} t + b_{2,n} \cos n\theta \sin \frac{n}{ar} t + b_{3,n} \sin n\theta \cos \frac{n}{ar} t + b_{4,n} \sin n\theta \sin \frac{n}{ar} t \right)$$

where coefficients are determined according to abovementioned formulas.

Consider particular cases (Maple examples):

1) isolated wave

2) standing waves
Summary

THE WAVE EQUATION

<table>
<thead>
<tr>
<th>Cylindrical Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\nabla^2 u + F(r, \theta, z) = \frac{1}{\nu^2} \frac{\partial^2 u}{\partial t^2}]</td>
</tr>
</tbody>
</table>

Steady State Problem - PE

<table>
<thead>
<tr>
<th>([u]_s = f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\nabla^2 u = 0]</td>
</tr>
<tr>
<td>[\left[u \right]_s = f]</td>
</tr>
<tr>
<td>[\left[\frac{\partial u}{\partial \nu} \right]_{\nu=0} = u_0]</td>
</tr>
</tbody>
</table>

Transient Problem - HE

<table>
<thead>
<tr>
<th>([u]_i = f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\nabla^2 u + F(r, \theta, z) = \frac{1}{\nu^2} \frac{\partial^2 u}{\partial t^2}]</td>
</tr>
<tr>
<td>(t > 0)</td>
</tr>
<tr>
<td>([u]_i = u_i)</td>
</tr>
<tr>
<td>(\left[\frac{\partial u}{\partial \nu} \right]_{\nu=0} = u_i)</td>
</tr>
</tbody>
</table>

Solution of IBVP

\[u(r, \theta, z, t) = u_s(r, \theta, z) + U(r, \theta, z, t) \]
ALLEGORY OF GEOMETRY

Museum of Louvre

Rene Descartes University, Paris
VIII.3.7 REVIEW QUESTIONS, EXAMPLES AND EXERCISES
REVIEW QUESTIONS

1. What is the main assumption in the method of separation of variables?
2. What is a separation constant?
3. How does the Sturm-Liouville problem appear in the method of separation of variables?
4. What is the form of the solution of the IVBP in the method of separation of variables?
5. How many terms are needed in the truncated infinite series for accurate presentation of the solution?
6. Give an example when the solution of the IBVP is given just by a one term trigonometric function? How does it happen?
EXAMPLES AND EXERCISES 1. Let \(D \subset \mathbb{R}^3 \) be a **domain** (open connected set), and let \(S = \overline{D} \setminus D \) be the **boundary** of \(D \) (recall Section VIII.1.11, p.568).

Show that if \(r \in S \) is a point of the boundary of \(D \), then any open ball \(B(r,R) \) with a radius \(R > 0 \) includes points both from \(D \) and \(\mathbb{R}^3 \setminus D \), i.e. intersection of any \(B(r,R) \) with the domain and with the surroundings is not empty:
\[
B(r,R) \cap D \neq \emptyset \quad \text{and} \quad B(r,R) \cap (\mathbb{R}^3 \setminus \overline{D}) \neq \emptyset .
\]

Remark: this property is usually used as the more general definition of the boundary:

If \(A \subset \mathbb{R}^n \) is an arbitrary subset of \(\mathbb{R}^n \) (not necessarily domain), then \(x \in \mathbb{R}^n \) is called a **boundary point** of \(A \) if for any radius \(R > 0 \):
\[
B(x,R) \cap A \neq \emptyset \quad \text{and} \quad B(x,R) \cap (\mathbb{R}^n \setminus A) \neq \emptyset .
\]

Then the set \(\partial A = \{ x \in \mathbb{R}^n \mid x \text{ is boundary point of } A \} \) is called the **boundary** of \(A \) in \(\mathbb{R}^n \).

If \(S = \overline{D} \setminus D \) is the **boundary** of domain \(D \), the \(S \) is the boundary of \(S \) in general sense too.

Examples of the boundary in general sense:

a) \(\partial [0,1] = \{0,1\} \)
b) \(\partial \{a\} = \{a\} \) (the boundary of an insulated point is the point itself)
c) \(\partial \mathbb{Q} = \mathbb{R} \)
d) \(\partial \mathbb{Z} = \mathbb{Z} \)
e) \(\partial \emptyset = \emptyset \)
f) \(\partial \mathbb{R}^n = \emptyset \)
g) \(\partial \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\} = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\} \cup \{0\} \)

2. a) Solve the Dirichlet problem for the Heat Equation:
\[
\frac{\partial^2 u}{\partial x^2} = a^2 \frac{\partial u}{\partial t} \quad u(x,t) : \quad x \in [0,L], \ t > 0
\]

Initial condition:
\[
u(x,0) = u_0(x)
\]

Boundary conditions:
\[
u(0,t) = 0, \quad t > 0 \quad \text{(Dirichlet)}
\]
\[
u(L,t) = 0, \quad t > 0 \quad \text{(Dirichlet)}
\]

b) Sketch the graph of solution for \(L=3 \) and \(a=0.1 \) and initial conditions:

i) \(u_0(x) = 1 \)

ii) \(u_0(x) = x(L-x) \)

iii) \(u_0(x) = \sin 2x \)
3. The Superposition Principle for Non-Homogeneous Heat Equation with Non-Homogeneous Boundary Condition:

Heat Equation:
\[
\frac{\partial^2 u}{\partial x^2} + F(x) = a \cdot \frac{\partial u}{\partial t} \\
\]
\(u(x,t): \quad x \in (0,L), \; t > 0 \)

Initial condition:
\(u(x,0) = u_0(x) \)

Boundary conditions:
\(u(0,t) = g_0, \; t > 0 \) \hspace{1cm} (Dirichlet)
\(\frac{\partial u}{\partial x}(L,t) = g_L, \; t > 0 \) \hspace{1cm} (Neumann)

Supplemental problems

a) steady state solution:
\[
\frac{\partial^2 u_s}{\partial x^2} + F(x) = 0 \\
\]
\(u_s(x): \quad x \in (0,L) \)
\(u_s(0) = g_0 \)
\(\frac{\partial u_s}{\partial x}(L) = f_L \)

b) transient solution:
\[
\frac{\partial^2 U}{\partial x^2} = a \cdot \frac{\partial U}{\partial t} \\
\]
\(U(x,t): \quad x \in (0,L), \; t > 0 \)
\(U(x,0) = u_0(x) - u_s(x) \)
\(U(0,t) = 0, \; t > 0 \)
\(U(L,t) = 0, \; t > 0 \)

First supplemental problem is a BVP for ODE. The second supplemental problem is an IBVP problem for the homogeneous Heat Equation with homogeneous boundary conditions.

Show that \(u(x,t) = U(x,t) + u_s(x) \) is a solution of the non-homogeneous IBVP.

Solve the problem with
\(F(x) = 5, \; g_0 = 1, \; g_L = 3 \) and \(u_0(x) = x(4-x) \).

Sketch the graph of the solution.
4. a) Solve the IBVP:

\[\frac{\partial^2 u}{\partial x^2} = a^2 \frac{\partial u}{\partial t} + F(x) \quad u(x,t), \ x \in (0, L), \ t > 0 \]

initial condition: \(u(x,0) = u_0(x) \)

boundary conditions: \(u(0,t) = f_1, \ t > 0 \) (I)
\(k \frac{\partial u(L,t)}{\partial x} + h u(L,t) = f_2, \ t > 0 \) (III)

b) Sketch the graph of solution with

\(L = 4, a = 0.5, k = 2.0, \)
\(u_0(x) = x^2 - \frac{L}{2} x + 5, f_1 = 10, f_2 = 1, F(x) = x \)

5. a) Solve the IBVP for the Heat Equation in the plane wall with distributed heat generation:

\[\frac{\partial^2 u}{\partial x^2} + F(x) = \frac{1}{\alpha} \frac{\partial u}{\partial t}, \quad u(x,t), \ x \in (0, L), \ t > 0, \ F(x) = \frac{\dot{q} x}{k} \]

Initial Condition: \(u(x,0) = u_0(x) \)

Boundary Conditions:
\(\frac{\partial u(0,t)}{\partial x} = 0, \quad t > 0 \)
\(k \frac{\partial u(L,t)}{\partial x} = h \left[T_e - u(L,t) \right], \ t > 0 \)

b) Sketch the graph of solution with

\(L = 0.5, \alpha = 0.0005, k = 150, \)
\(u_0(x) = 200, T_e = 10, h = 250, \dot{q} = 200000 \)

6. a) Solve the Heat Equation in the cylindrical domain with angular symmetry

\[\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = a^2 \frac{\partial u}{\partial t} \quad u(r,z): 0 \leq r < r_j, \ t > 0 \]

Boundary condition: \(u(r_j,t) = 0, \ t > 0 \)

Initial condition \(u(r,0) = u_0(r) \)

b) Sketch the graph of the solution for

\(r_j = 0.5 \)
\(a = 3 \)
\(u_0(r) = 6r^2 + 1 \)
7. a) Solve the Heat Equation in the cylindrical domain with angular symmetry
\[\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + a^2 \frac{\partial u}{\partial t} = u(r,z), \quad 0 \leq r < r_1, \quad t > 0 \]

Boundary condition: \(u(r,t) = f_i \), \(t > 0 \)

Initial condition \(u(r,0) = u_0(r) \)

b) Display some creativity in visualization of solution for
\(r_1 = 0.5 \)
\(a = 3000 \)
\(f_i = 70 \)
\(u_0(r) = 25r^2 + 20 \)

c) Give some physical interpretation of the problem

8. Solve the IBVP for the Heat Equation in polar coordinates with angular symmetry:
\[\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + a^2 \frac{\partial u}{\partial t} = u(r,t), \quad r \in [0,r_1), \quad t > 0 \]

Initial conditions: \(u(r,0) = u_0(r) \)

Boundary condition: \(k \frac{\partial u(r,t)}{\partial r} + hu(r,t) = f_i \), \(t > 0 \)

And sketch the graph of solution for
\(r_1 = 2, \ a = 0.5, \ k = 0.1, \ h = 12, \ f_i = 2, \) and \(u_0(r) = (r-r_1)^2 \)

(hint: first, find the steady state solution)

9. a) Solve the Heat Equation in the annular domain with angular symmetry (cylindrical wall with uniform heat generation)
\[\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{k} \frac{\partial u}{\partial t} = u(r,t), \quad r_i < r < r_z, \quad t > 0 \]

Boundary condition: \(u(r,z) = T_i \), \(t > 0 \)
\(u(r,0) = T_2 \), \(t > 0 \)

Initial condition: \(u(r,0) = u_0(r) \), \(r_i < r < r_z \)

b) Display some creativity in visualization of the solution for
\(r_1 = 0.5 \)
\(T_i = 50 \)
\(r_2 = 0.6 \)
\(T_2 = 10 \)
\(k = 150 \)
\(u_0(r) = 10 \)
\(\alpha = 0.00001 \)
\(\dot{q} = 500000 \)
10. EXAMPLE Radiation Induced Thermal Stratification in Surface Layers of Stagnant Water

Professor Raymond Viskanta (on the left)
Antalya, Turkey, June 2001
Radiation Induced Thermal Stratification in Surface Layers of Stagnant Water

Based on papers:

Introduction:
The vertical temperature distribution in a body of water have important effects on chemical and physical properties, dissolved oxygen content, water quality, aquatic life and ecological balance as well as mixing processes in water. Solar radiation is recognized as the principle natural heat load in waters. Some investigators have considered the radiation to be absorbed at the water surface (i.e. opaque) and others treated the water as being semitransparent but ignored the spectral nature of radiation. Since the ultraviolet (UV) and infrared (IR) parts of the incoming solar radiation are largely absorbed within the first centimeters of the water and the visible part (VI) penetrates more deeply and carries significant energy to depths, the modeling of water as a gray medium is open to question and needs to be examined.

In the works of Raymond Viskanta (Purdue University) and coworkers, analysis for the time dependent thermal stratification of in surface layers of stagnant water by solar radiation was developed. The transient temperature distribution is obtained by solving the one-dimensional energy equation for combined conduction and radiation energy transfer using a finite difference method. Experimentally, solar heating \(T_0 = 5800K \) of water is simulated using tungsten filament lamps \(T_0 = 3250K \) in parabolic reflectors of known spectral characteristics.

Our Objective:
Analytical investigation of transient combined conduction-radiation heat transfer with two band spectral model (VI-IR) of incident radiation.

Spectral distribution of emissive power:
Model: Heat equation: \[
\frac{\partial^2 u}{\partial x^2} + \frac{Q(x)}{k} = \frac{1}{\alpha} \frac{\partial u}{\partial t}
\]
Initial condition: \[u(x,0) = u_0(x) = T_0\]
Boundary conditions: \[
\left\{-k \frac{\partial u}{\partial x} = -h_{\text{eff}} (u - T_\infty) + q_{\text{IR}}^* \right\}_{x=L} = T_L
\]
Source function (radiator energy absorption rate): \[Q(x) = q_{\text{v1}}^* \beta e^{-\beta x}\]

Water Properties:
- Extinction coefficient \[\beta = 70 \quad \text{m}^{-1}\]
- Density \[\rho = 1000 \quad \text{kg/m}^3\]
- Specific heat \[c_p = 4180 \quad \text{J/kg} \cdot \text{K}\]
- Conductivity \[k = 0.6 \quad \text{W/m} \cdot \text{K}\]

Data:
- Length \[L = 0.381 \quad \text{m}\]
- Temperature \[T_0 = T_{\text{inf}} = T_{\text{i}} = 25 \quad \text{°C}\]
- Visible irradiation \[q_{\text{v1}}^* = 850 \quad \text{W/m}^2\]
- Infrared irradiation \[q_{\text{IR}}^* = 150 \quad \text{W/m}^2\]
- Efficient convective coefficient \[h_{\text{eff}} = 12 \quad \text{W/m}^2 \cdot \text{K}\]

a. Solve the given IBVP:

\[u(x,t) = \]

\[u(0.05\text{m},3000\text{s}) = 28.3\text{°C} \quad \text{particular value}\]

b. Sketch the graph of the solution for \(t = 5, 10, 15, 30, 60, 90 \text{ min}\) and compare with Viskanta’s results.

c. Your view on the problem. How can the accuracy of the model be improved? What have you learned from this problem?
Solution:

Heat equation:

\[\frac{\partial^2 u}{\partial x^2} + \frac{Q(x)}{k} = \frac{1}{\alpha} \frac{\partial u}{\partial t} \]

\[Q(x) = q_n^* \beta e^{-\beta x} \]

Initial condition:

\[u(x,0) = u_0(x) = T_0 \]

Boundary conditions:

\[[u]_{x=0} = T_L \]

\[\left[-k \frac{\partial u}{\partial x} + h_{\text{eff}} u \right]_{x=0} = h_{\text{eff}} T_0 + q_n^* \]

\[\left[-\frac{\partial u}{\partial x} + h_{\text{eff}} \right]_{x=L} = f_0 \]

\[H = \frac{h_{\text{eff}}}{k}, \quad f_0 = \frac{h_{\text{eff}} T_0 + q_n^*}{k} \]

\[\frac{\partial^2 u}{\partial x^2} + F(x) = \frac{1}{\alpha} \frac{\partial u}{\partial t} \quad x \in (0, L) \]

\[F(x) = q_n^* \beta e^{-\beta x} \]

\[\left[-\frac{\partial u}{\partial x} + Hu \right]_{x=0} = f_0 \]

\[[u]_{x=L} = T_L \]

\[u(x,0) = u_0(x) = T_0 \]

I Steady State Solution:

\[\frac{\partial^2 u_s}{\partial x^2} + F(x) = 0 \quad x \in (0, L) \]

\[\left[-\frac{\partial u_s}{\partial x} + Hu_s \right]_{x=0} = f_0 \]

\[[u_s]_{x=L} = T_L \]

\[\frac{\partial^2 u_s}{\partial x^2} + F(x) = 0 \]

\[\frac{\partial^2 u_s}{\partial x^2} = -\frac{q_n^* \beta}{k} e^{-\beta x} \]

\[\frac{\partial^2 u_s}{\partial x^2} = \frac{q_n^* \beta}{k} \int e^{-\beta x} dx \]

\[\frac{\partial^2 u_s}{\partial x^2} = \frac{q_n^* \beta}{k} \frac{1}{(-\beta)} \int e^{-\beta x} d(-\beta x) \]

\[\frac{\partial u_s}{\partial x} = \frac{q_n^*}{k} e^{-\beta x} + c_1 \]

\[u_s = \frac{q_n^*}{k} \int e^{-\beta x} dx + c_1 x + c_2 \]
\[u_x = -\frac{q^*_{\text{v1}}}{k\beta} e^{-\beta x} + c_1 x + c_2 \]

Boundary conditions:
\[
x = 0\quad \left[-\left(\frac{q^*_{\text{v1}}}{k} e^{-\beta x} + c_1 \right) + H \left(-\frac{q^*_{\text{v1}}}{k\beta} e^{-\beta x} + c_1 x + c_2 \right) \right]_{x=0} = f_0
\]
\[
-\left(\frac{q^*_{\text{v1}}}{k} + c_1 \right) + H \left(-\frac{q^*_{\text{v1}}}{k\beta} + c_2 \right) = f_0
\]
\[
-c_1 + Hc_2 = \frac{q^*_{\text{v1}}}{k} \left(1 + \frac{H}{\beta} \right) + f_0 \quad f_0 = h_{\text{eff}} T_\infty + \frac{q^*_{\text{IR}}}{k}
\]
\[
-c_1 + Hc_2 = \frac{l}{k} \left[1 + \frac{H}{\beta} \right] q^*_{\text{v1}} + h_{\text{eff}} T_\infty + q^*_{\text{IR}}
\]
\[
-kc_1 + h_{\text{eff}} c_2 = \left(1 + \frac{h_{\text{eff}}}{k\beta} \right) q^*_{\text{v1}} + q^*_{\text{IR}} + h_{\text{eff}} T_\infty
\]
\[
x = L\quad \frac{q^*_{\text{v1}}}{k\beta} e^{-\beta L} + c_1 L + c_2 = T_L
\]
\[
c_1 L + c_2 = \frac{q^*_{\text{v1}}}{k\beta} e^{-\beta L} + T_L
\]

In matrix form:
\[
\begin{bmatrix}
-k & h_{\text{eff}} \\
L & 1
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}
= \begin{bmatrix}
\left(1 + \frac{h_{\text{eff}}}{k\beta} \right) q^*_{\text{v1}} + q^*_{\text{IR}} + h_{\text{eff}} T_\infty \\
\frac{q^*_{\text{v1}}}{k\beta} e^{-\beta L} + T_L
\end{bmatrix}
\]

Use Cramer’s Rule:
\[
det \begin{bmatrix}
-k & h_{\text{eff}} \\
L & 1
\end{bmatrix} = -(k + h_{\text{eff}} L)
\]
\[
det \begin{bmatrix}
\left(1 + \frac{h_{\text{eff}}}{k\beta} \right) q^*_{\text{v1}} + q^*_{\text{IR}} + h_{\text{eff}} T_\infty & h_{\text{eff}} \\
\frac{q^*_{\text{v1}}}{k\beta} e^{-\beta L} + T_L & 1
\end{bmatrix} = \frac{1}{-(k + h_{\text{eff}} L)} \begin{bmatrix}
\left(1 + \frac{h_{\text{eff}}}{k\beta} \right) q^*_{\text{v1}} + q^*_{\text{IR}} + h_{\text{eff}} T_\infty & h_{\text{eff}} \\
\frac{q^*_{\text{v1}}}{k\beta} e^{-\beta L} + T_L & 1
\end{bmatrix}
\]
\[
c_1 = \frac{\frac{q^*_{\text{v1}}}{k\beta} e^{-\beta L} + T_L}{-(k + h_{\text{eff}} L)}
\]
\[
c_2 = \frac{\left(1 + \frac{h_{\text{eff}}}{k\beta} \right) q^*_{\text{v1}} + q^*_{\text{IR}} + h_{\text{eff}} T_\infty - h_{\text{eff}} \frac{q^*_{\text{v1}}}{k\beta} e^{-\beta L}}{-(k + h_{\text{eff}} L)}
\]
\[
c_1 := \frac{h_{\text{Tinf}} + q_{\text{ir}} + q_0 + \frac{q_0 h}{k\beta}}{-k - L h} \left(T_L + \frac{q_0 e^{-\beta L}}{k\beta} \right) h
\]
\[
\begin{align*}
 c_2 &= \det \begin{bmatrix}
 -k & \left(1 + \frac{h_{eff}}{k\beta}\right)q_1^* + h_{eff} T_c \\
 L & -k q_1^* e^{-\beta L} + q_{in}^* + T_c \\
 \end{bmatrix} \\
 &= \frac{-k q_1^* e^{-\beta L} - kT_c - L \left(1 + \frac{h_{eff}}{k\beta}\right) q_1^* - q_{in}^* L - h_{eff} T_c L}{(k + h_{eff} L)} \\
 &= \frac{\frac{q_1^* e^{-\beta L}}{\beta} + kT_c + L \left(1 + \frac{h_{eff}}{k\beta}\right) q_1^* + q_{in}^* L + h_{eff} T_c L}{(k + h_{eff} L)} \\
 \quad \text{and} \\
 c_2 &= \frac{\frac{q_1^* e^{-\beta L}}{\beta} + kT_c + L \left(1 + \frac{h_{eff}}{k\beta}\right) q_1^* + q_{in}^* L + h_{eff} T_c L}{(k + h_{eff} L)} \\
 &= \frac{-k \left(\frac{q_{in}^* e^{-\beta L}}{k\beta} T_c + q0 e^{-\beta L} + q0 T_c + q0}{-k - L h}
\end{align*}
\]

II Transient Solution:
\[U(x,t) = u(x,t) - u_i(x)\]

\[
\begin{align*}
 \frac{\partial^2 U}{\partial x^2} &= \frac{1}{\alpha} \frac{\partial U}{\partial t} \\
 \left[\frac{\partial U}{\partial x} + HU \right]_{x=0} &= 0 \\
 [U]_{x=0} &= 0 \\
 U(x,0) = u_i(x) - u_i(x) = U_i(x)
\end{align*}
\]

Supplemental SLP (RD):

\[
X_n = \sin\left(\lambda_n (x-L)\right) \\
\|X_n\|
\]

Solution:
\[U(x,t) = \sum_{n=1}^{L} a_n X_n e^{-\alpha x^2 t} \\
a_n = \frac{1}{\|X_n\|} \int_0^L \left[u_i(x) - u_i(x) \right] X_n(x) dx
\]

III Solution:
\[u(x,t) = u_i(x) + U(x,t)\]
Comparison

Current analytical solution

Experiment and numerical solution [Viskanta]

> U0 := subs(t=0, u(x,t)) :
> U1 := subs(t=300, u(x,t)) :
> U2 := subs(t=600, u(x,t)) :
> U3 := subs(t=900, u(x,t)) :
> U4 := subs(t=1800, u(x,t)) :
> U5 := subs(t=3600, u(x,t)) :
> U6 := subs(t=5400, u(x,t)) :

30 min

90 min
11. Find the solution of the IBVP for the Wave Equation
\[
\frac{\partial^2 u}{\partial t^2} - \frac{1}{a^2} \frac{\partial^2 u}{\partial x^2} = 0, \quad u(x,t), \quad x \in (0,L), \quad t > 0
\]
initial condition: \[u(x,0) = u_0(x)\]
\[\frac{\partial u(x,0)}{\partial t} = u_1(x)\]
boundary conditions: \[u(0,t) = 0, \quad t > 0\] (Dirichlet)
\[u(L,t) = 0, \quad t > 0\] (Dirichlet)

Sketch the graph of solution with \(L = 2, a = 0.5\), and

a) \(u_1(x) = -0.1, \; u_0(x) = x^2 (L - x)^2\)

b) \(u_1(x) = 0, \; u_0(x) = \sin \frac{6\pi}{L} x\)
(observe the phenomena called standing waves)

12. Find the solution of the IBVP for the Wave Equation
\[
\frac{\partial^2 u}{\partial t^2} - \frac{1}{a^2} \frac{\partial^2 u}{\partial x^2} = 0, \quad u(x,t), \quad x \in (0,L), \quad t > 0
\]
initial condition: \[u(x,0) = u_0(x)\]
\[\frac{\partial u(x,0)}{\partial t} = u_1(x)\]
boundary conditions: \[-u'(0,t) + H_x u(0,t) = 0, \quad t > 0\] (Robin)
\[u(L,t) = 0, \quad t > 0\] (Dirichlet)

Sketch the graph of solution with \(L = 5, a = 2.0\), and

a) \(u_1(x) = 0.2, \; u_0(x) = (L - x)^2\)

b) \(u_1(x) = 0, \; u_0(x) = X_5(x)\) (eigenfunction)

13. a) Solve the IBVP:
\[
\frac{\partial^2 u}{\partial x^2} = a^2 \frac{\partial u}{\partial t} + F(x), \quad u(x,t), \quad x \in (0,L), \quad t > 0
\]
initial condition: \[u(x,0) = u_0(x)\]
boundary conditions: \[u(0,t) = f_1, \quad t > 0\] (Dirichlet)
\[k \frac{\partial u(L,t)}{\partial x} + h u(L,t) = f_2, \quad t > 0\] (Robin)

b) Sketch the graph of solution with
\(L = 4, a = 0.5, k = 2.0, u_0(x) = x(x - L / 2) + 5, f_1 = 10, f_2 = 1, F(x) = x\)
14A. Find the solution for vibration of the annular membrane with angular symmetry:

\[
\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial t^2}, \quad u(r,t), \quad r \in (r_1, r_2), \quad t > 0
\]

Initial conditions:
\[
u(r,0) = u_0(r), \quad \frac{\partial u}{\partial t}(r,0) = u_1(r)
\]

Boundary condition:
\[
u(r_1,t) = 0, \quad t > 0
\]
\[
u(r_2,t) = 0, \quad t > 0
\]

And sketch the graph of solution for
\[
r_1 = 1, \quad r_2 = 2, \quad a = 0.5, \quad u_0(r) = (r-r_1)(r_2-r), \quad \text{and} \quad u_1(r) = 0.
\]

14B. Heavy membrane

Find the solution for vibration of the annular membrane with angular symmetry:

\[
\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + F(r) = a^2 \frac{\partial^2 u}{\partial t^2}, \quad u(r,t), \quad r \in (r_1, r_2), \quad t > 0
\]

Initial conditions:
\[
u(r,0) = u_0(r), \quad \frac{\partial u}{\partial t}(r,0) = u_1(r)
\]

Boundary condition:
\[
u(r_1,t) = 0, \quad t > 0
\]
\[
u(r_2,t) = 0, \quad t > 0
\]

And sketch the graph of solution for
\[
r_1 = 1, \quad r_2 = 2, \quad a = 0.5, \quad F = -1.5, \quad u_0(r) = (r-r_1)(r_2-r), \quad \text{and} \quad u_1(r) = 0.
\]
Non-Classical IBVPs

15. (Flow Between Two Plates)

\[\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial z^2} - \frac{\rho c_p}{k} v \frac{\partial T}{\partial x} + \frac{\rho c_p}{k} \frac{\partial T}{\partial t} = 0 \]

\[x = 0 \quad T = T_e \]
\[x \to \infty \quad T < \infty \]
\[z = 0 \quad T = T_w \]
\[z = L \quad T = T_w \]
\[t = 0 \quad T = T_0 \]

Find steady state solution for \(\dot{q} = 0 \).
Sketch the graph for \(T_e = 80 \), \(T_w = 10 \), \(v = 2 \), \(L = 0.02 \), fluid is water.

16. (Transient Conduction in Fin)

\[\frac{\partial^2 T}{\partial x^2} \left(\frac{hP}{kA_e} (T - T_e) + \frac{\dot{q}}{k} \right) = \frac{\rho c_p}{k} \frac{\partial T}{\partial t} \]

\[x = 0 \quad T = T_b \]
\[x = L \quad T = T_c \]
\[t = 0 \quad T = T_0 \]

Find transient state solution for \(\dot{q} = 0 \).

circular copper fin (\(D = 0.005 \))

Sketch the graph for \(T_b = 200 \), \(T_c = 50 \), \(T_w = 10 \), \(T_0 = 10 \), \(h = 150 \), \(L = 0.2 \),
17. [Based on Nellis&Klein, p.37] Absorption in a lens

Analytical investigation of transient combined conduction-radiation heat transfer with a gray spectral model of incident radiation.

A lens is used to focus the illumination radiation that is required to develop the resist in a lithographic manufacturing process.

The lens is not perfectly transparent but rather absorbs some of the illumination energy that passes through it.

Model:

Heat equation:
\[\frac{\partial^2 u}{\partial x^2} + \frac{Q(x)}{k} = \frac{1}{\alpha} \frac{\partial u}{\partial t} \]

Initial condition:
\[u(x,0) = u_0(x) = T_0 \]

Boundary conditions:
\[-k \frac{\partial u}{\partial x} = -h_{\text{eff}} (u - T_\infty) \quad \text{at } x = 0 \]
\[k \frac{\partial u}{\partial x} = -h_{\text{eff}} (u - T_\infty) \quad \text{at } x = L \]

Dissipation source function (radiant energy absorption rate):
\[Q(x) = q_0^* \beta e^{-\beta x} \]

The Lens Properties:

Extinction coefficient \(\beta = 100 \quad \text{m}^{-1} \)
Density \(\rho = 2500 \quad \text{kg m}^{-3} \)
Specific heat \(c_p = 750 \quad \text{J kg}^{-1} \text{K}^{-1} \)
Conductivity \(k = 1.5 \quad \text{W m}^{-1} \text{K}^{-1} \)

Data:

Length \(L = 0.1 \quad \text{m} \)
Temperature \(T_{\text{inf}} = T_0 = 20 \quad \text{"C} \)
Incident radiative flux \(q_0^* = 1000 \quad \text{W m}^{-2} \)
Efficient convective coefficient \(h_{\text{eff}} = 20 \quad \text{W m}^{-2} \text{K}^{-1} \)
a. Solution of the given IBVP:

\[u(x,t) = \]

b. Steady State Solution:

\[U(x) = \]

c. Sketch the graph.
18. Investigate the temperature field in the long column of square cross-section two adjacent sides of which are thermally insulated and two others are maintained at temperatures $T_1 = 100^\circ C$ and $T_2 = 500^\circ C$ if initially it was of uniform temperature $T_0 = 20^\circ C$. Sketch the temperature surfaces.

19. Use separation of variables for solution of IBVP for long cylinder with angular symmetry, $\left(\frac{\partial u}{\partial \theta} = 0 \right)$:

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial z^2} + \frac{g}{k} = \frac{1}{\alpha} \frac{\partial u}{\partial t}$$
20. Set up a mathematical model (choose an appropriate coordinate system and dimension of the problem, write the governing equation and corresponding initial and boundary conditions) for the following engineering models (do not solve the problem):

a) A very thin long wire dissipates energy in the massive layer of the stagnant media with the rate per unit length \(q \), \([\text{W/m}]\). The media has a thermal conductivity \(k \), \([\text{W/m} \cdot \text{K}]\). Determine the stationary temperature distribution in the media.

b) In the massive layer of homogeneous material (with thermal properties \(k, \rho, c_p \)) which was initially at the uniform temperature \(T_0 \), a localized heat source spontaneously started to dissipate energy with the rate \(q \) \([\text{W}]\). Determine the development of the temperature field in the material.

c) A very long tree trunk of radius \(R \) in the forest is exposed to the surrounding air (average wind speed is \(v \), \([\text{m/s}]\)), but the dense crown prevents the direct sun radiation of the trunk. Set up the mathematical model describing the temperature distribution in the tree trunk during the day. Conductivity in the tree depends on direction: it is much higher along the tree than in the radial direction.

d) A wide reservoir of water of \(L \) meters deep is exposed to the solar irradiation \(G_0 \), \([\text{W/m}^2]\) incident at the angle \(\theta \). Penetration of the solar radiative flux along the path \(s \) is described by the Lambert-Beer Law \(G(x) = G_0 \cos \theta e^{-s\kappa} \), where \(\kappa \), \([\text{m}^{-1}]\) is the gray absorption coefficient of water. Then the solar energy dissipated in water (radiative dissipation source or the divergence of radiative flux) is determined by \(Q(x) = -\frac{dG(x)}{dx} \), \([\text{W/m}^2]\). Set up the mathematical model describing the equilibrium temperature field in the water layer.

e) Two opposite sides of the long column are insulated. There is an intensive condensation of the water steam on one of the other sides. The last side is exposed to the convective environment at temperature \(T_\infty \) and convective coefficient \(h \), \([\text{W/m}^2 \cdot \text{K}]\). Due to some chemical reaction there is production energy in the column with the volumetric rate \(\dot{q} \), \([\text{W/m}^3]\). Initially, column was at the uniform temperature \(T_0 \). Describe the transient temperature distribution inside of the column.
Stanislaw Mazur was a close collaborator with Banach at Lwów and was a member of the Lwów School of Mathematics, where he participated in the mathematical activities at the Scottish Café. On 6 November 1936, he posed the "basis problem" of determining whether every Banach space has a Schauder basis, with Mazur promising a "live goose" as a reward: Thirty seven years later, a live goose was awarded by Mazur to Per Enflo in a ceremony that was broadcast throughout Poland.