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Introduction 
A confidence interval is a measure of how certain we are that if we repeated a set of measurements, 
we would get an equivalent result. Confidence interval can either be expressed as a numerical range 
or as best estimate ± margin of error. The sample mean  �̅�𝑥 (algebraic mean of the repeated 
measurements 𝑥𝑥𝑖𝑖) is usually taken as the best estimate. 

The margin of error accounts for uncertainty due to imperfect sampling and is a measure of 
precision. When you measure a quantity repeatedly, you tend to get different results, i.e. variance. 
This could be due to natural fluctuations in the process, random environmental noise, intrinsic 
limitations in an electronic sensor, or human reading of an analog instrument. When you collect 
multiple data points and then average them, this reduces the susceptibility to such random variations 
and improves precision, which is why is it always a good idea to collect as much data as you can.  

Accuracy requires both precision and trueness. Using an average from many data points does not 
eliminate systematic errors or bias, for instance if a temperature sensor were mis-calibrated and 
always produced values that were too high. Here I describe how to characterize random fluctuations; 
characterizing systematic error is a topic for another time. 

Independent Samples 
To generate a mean with a low margin of error, you must collect many independent samples for a 
single measured quantity. An independent sample means that its residual (𝑥𝑥𝑖𝑖 − �̅�𝑥) is not correlated 
with other sample residuals, because you repeated the experiment with enough time or distance or 
other intervening process separating the samples so that they are each subject to a different set of 
environmental disturbances. For instance, if you used a computer to collect 100 temperature readings 
from a single temperature sensor over the course of 100 seconds, then adjacent readings would not 
be independent from each other if whatever is causing temperature fluctuations in the environment 
takes longer than 1 second to occur.  

One way to improve independence and reduce systematic error is to design your experiment so that 
variables you control are arranged in random order. In other words, instead of collecting pressure 
data for multiple flow rates arranged from smallest to largest, you should put the flow rates in 
random order. Or if you are trying to make multiple measurements at the same flow rate, then you 
could move the control valve randomly higher or lower between measurements, so that they are 
more independent and do not suffer from hysteresis (a type of bias caused by a valve always being 
driven in the same direction).  

To test for independence, one can plot residuals (𝑥𝑥𝑖𝑖 − �̅�𝑥) for samples to see if any undesired patterns 
emerge. For a time series (i.e. samples collected with a fixed time interval), a Durbin-Watson test 
can be done to detect unwanted autocorrelation or serial correlation. 
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Margin of Error 
Following accepted engineering practice, you need to calculate a confidence interval in the form 

�̅�𝑥 ± �𝑡𝑡
𝑠𝑠
√𝑛𝑛

� (1) 

where  �̅�𝑥 is the sample mean, 𝑡𝑡 is the critical value from Student’s 𝑡𝑡 distribution, 𝑛𝑛 is the number of 
independent samples, and 𝑠𝑠 is the standard deviation of the samples.  

The quantity 𝑡𝑡 can be looked up on a table or from an Excel function (see below) and depends on the 
confidence level and on a degrees of freedom value, which is df = 𝑛𝑛 − 1. You should generally use a 
confidence level of 95% or higher and use a “two-tailed” distribution. 95% confidence level is 
equivalent to a level of significance of 𝛼𝛼 = 0.05; you will know you calculated 𝑡𝑡 correctly if you get 
𝑡𝑡 ≈ 2 for df > 27. 

To use Excel to calculate quantities needed in Eq. 1, use the following functions 

Quantity Excel Function 
�̅�𝑥 AVERAGE(range) 
𝑠𝑠 STDEV.S(range) 
𝑛𝑛 COUNT(range) 
𝑡𝑡 T.INV.2T(𝛼𝛼, df) 

where range indicates the range of cells containing the sample measurements, such as A2:A20.  

Notice in Eq. 1 that the margin of error (the quantity after the ±) decreases with increasing value of 
𝑛𝑛. This reflects the fact that you can have more confidence in �̅�𝑥 if it is based on a larger number of 
independent samples. However, if your samples are not fully independent (e.g. there is correlation 
between the sample residuals) it is as if 𝑛𝑛 is incorrectly too large and Eq. 1 will underestimate the 
true margin of error. 

Level of Precision 
When presenting your confidence interval, you should round off your margin of error to 1 or 2 
significant digits. One rule of thumb is if the leading digit in the margin of error is a smaller number 
(1 or 2) then use two significant digits and otherwise use one significant digit. In any case, you 
should then round off your sample mean so its precision matches the precision of your margin of 
error. For example, �̅�𝑥 = 131.773 ± 2.4329 becomes 131.8 ± 2.4. Notice how the revised sample 
mean and margin of error don’t have the same number of significant digits, but they do have the 
same level of precision (i.e. decimal place of least significant digit) and that the sample mean was 
appropriately rounded off to that level of precision. 

Two-Sample t-Test 
There are instances where you take a set of measurements, make (or perhaps don’t make) some 
change to the process, and then take a second set of measurements. Was there a measurable change 
(or not) in the outcome? In science and engineering we ask whether there is a statistically significant 
change in the respective means from the two data sets. A quick and approximate answer is to check 
for any overlap between the respective confidence intervals of the two data sets—overlap would 
suggest that any process change was not necessarily significant.  
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However, we can more carefully determine the answer by doing a two-sample or independent sample 
t-test. In its most general case, we are comparing two different data sets and we want to know the 
difference between the means and the corresponding margin of error for this difference: 

(�̅�𝑥2 − �̅�𝑥1) ± �𝑡𝑡�
𝑠𝑠12

𝑛𝑛1
+
𝑠𝑠22

𝑛𝑛2
� (2) 

where  �̅�𝑥𝑘𝑘, 𝑠𝑠𝑘𝑘, and 𝑛𝑛𝑘𝑘 are respectively the mean, standard deviation, and number of samples for data 
set 𝑘𝑘. The 𝑡𝑡 statistic is computed as we did above, typically with 𝛼𝛼 = 0.05 and an assumption of a 
“two-tailed” distribution. The degrees of freedom value for computing 𝑡𝑡 is given by  

df =
�𝑠𝑠1

2

𝑛𝑛1
+ 𝑠𝑠22
𝑛𝑛2
�
2

𝑠𝑠14
𝑛𝑛12(𝑛𝑛1 − 1) + 𝑠𝑠24

𝑛𝑛22(𝑛𝑛2 − 1)

(3) 

This number is not necessarily an integer: to get a 𝑡𝑡 value one can either interpolate on a t-table or 
simply use the Excel function T.INV.2T, which does not require an integer. If calculated correctly, 
df should be within the following range: min(𝑛𝑛1 − 1,𝑛𝑛2 − 1) ≤ df ≤ 𝑛𝑛1 + 𝑛𝑛2 − 2. 

Once a confidence interval is computed by Eq. 2, this can be compared to a hypothesized difference 
(called the null hypothesis), typically zero difference. For instance, if Eq. 2 produced the result 8 ±
15 at the 95% confidence level, then this means that a difference of zero is within the interval and 
we conclude that the process did not have a statistically significant effect, or that any observed 
change was due to random chance. Such a result is not the final word, however, because it could be 
affected by having too few samples in one or both data sets. On the other hand, if the result of Eq. 2 
were 8 ± 3, then a change of zero is outside of the confidence interval and we can conclude (with 
95% confidence) that the process did have a significant effect.  

Eqs. 2 and 3 are known as Welch’s t-test, which is considered fairly robust as long as df is not too 
small. If df is small, consider using the following “pooled” t-test that assumes the two sets of 
measurements have the same population standard deviation (i.e. 𝑠𝑠1 and 𝑠𝑠2 would converge to the 
same value if enough samples are taken). One uses a pooled value of the standard deviation, 𝑠𝑠𝑝𝑝, for 
the confidence interval: 

(�̅�𝑥2 − �̅�𝑥1) ± �𝑡𝑡 𝑠𝑠𝑝𝑝�
1
𝑛𝑛1

+
1
𝑛𝑛2
� (4) 

where 

𝑠𝑠𝑝𝑝2 =
(𝑛𝑛1 − 1) 𝑠𝑠12 + (𝑛𝑛2 − 1) 𝑠𝑠22

𝑛𝑛1 + 𝑛𝑛2 − 2
(5) 

and the 𝑡𝑡 statistic uses df = 𝑛𝑛1 + 𝑛𝑛2 − 2. 


