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This document summarizes equations for computing pressure drop of a power-law fluid 
through a pipe. This is important to determine required pumping power for many fluids of 
practical importance, such as crude oil, melted plastics, and particle/liquid slurries. To 
simplify the analysis, I will assume the use of smooth and relatively long pipes (i.e. neglect 
pipe roughness and entrance effects). I further assume the reader has had exposure to 
principles taught in a college-level fluid mechanics course. 

Types of Fluids 

To begin, one must understand the difference between Newtonian and non-Newtonian fluids. 
There are many types of non-Newtonian fluids and this is a vast topic, which is studied under 
a branch of physics known as rheology. Rheology concerns itself with how materials 
(principally liquids, but also soft solids) flow under applied forces.  

Some non-Newtonian fluids exhibit time-dependent or viscoelastic behavior. This means their 
flow behavior depends on the history of what forces were applied to the fluid. Such fluids 
include thixotropic (shear-thinning over time) and rheopectic (shear-thickening over time) 
types. Viscoelastic fluids exhibit elastic or solid-like behavior when forces are first applied, 
and then transition to viscous flow under continuing force. These include egg whites, mucous, 
shampoo, and silly putty. We will not be analyzing any of these time-dependent fluids in this 
discussion.  

Time-independent or inelastic fluids flow with a constant rate when constant forces are 
applied to them. They are the focus of this discussion. To understand time-independent non-
Newtonian fluids we must first understand Newtonian fluids. A Newtonian fluid exhibits a 
simple linear relationship between shear stress 𝜏𝜏 and strain rate  �̇�𝛾. The ratio between these 
two quantities is the viscosity 𝜇𝜇, a quantity that depends on temperature but is otherwise a 
constant:   

𝜏𝜏 = 𝜇𝜇 �̇�𝛾 (1) 

 
In contrast, for a non-Newtonian fluid, the viscosity is a function of �̇�𝛾. A common way to 
describe this is with an apparent viscosity 𝜇𝜇ap that is measured at a particular shear rate. For 
a so-called power-law fluid, we use the relationship  

𝜇𝜇ap(�̇�𝛾) = 𝐾𝐾 �̇�𝛾𝑛𝑛−1 (2) 

where 𝐾𝐾 and 𝑛𝑛 are constants that nevertheless depend on the fluid and the temperature. 𝐾𝐾 has 
been called the consistency index and 𝑛𝑛 the flow behavior index. Because 𝜇𝜇ap has units of 
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pressure × time and �̇�𝛾 has units of inverse time, the units on 𝐾𝐾 depend on the value of 𝑛𝑛, such 
as Pa ⋅ s𝑛𝑛.  

By substituting Eq. 2 into Eq. 1, one can see that for a power-law fluid 

𝜏𝜏 = 𝐾𝐾 �̇�𝛾𝑛𝑛 (3) 

One can further see that if 𝑛𝑛 = 1 then Eq. 3 is equivalent to Eq. 1 and Newtonian behavior is 
recovered. If 𝑛𝑛 > 1 the fluid is known as dilatant or shear-thickening. If 𝑛𝑛 < 1 the fluid is 
known as pseudoplastic or shear-thinning, which is the more common case for non-Newtonian 
fluids. 

The mechanical behaviors of Newtonian, pseudoplastic, and dilatant fluids are illustrated in 
Fig. 1. Note that these classifications are based only on the value of 𝑛𝑛; the consistency index 𝐾𝐾 
could be large or small for a particular fluid regardless of its classification, and this would 
change its relative value of apparent viscosity. 

 

 Fig. 1. Illustration of shear stress vs. strain rate for three types of fluids. 

 

Determining Power-Law Constants under Laminar Flow 

To fully understand a power-law fluid one must determine the unknown constants 𝐾𝐾 and 𝑛𝑛  in 
Eq. 2 or 3. One way to do this is to produce a flow with a known value of strain rate �̇�𝛾 and to 
then measure shear stress 𝜏𝜏. One can then repeat this for different values of  �̇�𝛾. For instance, in 
Couette flow a moving surface is placed parallel to a stationary surface, with a fixed gap of 
distance 𝐻𝐻, as shown in Fig. 2 (left). The fluid in the gap moves in a laminar fashion as shown 
by the velocity lines. In Couette flow there is a single strain rate determined by  𝛾𝛾 ̇ = Δ𝑣𝑣/𝐻𝐻, 
where Δ𝑣𝑣 is the velocity of the upper surface relative to the lower surface. 𝜏𝜏 can be determined 
by measuring the force required on the moving surface to maintain steady motion. 
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Fig. 2. Couette flow (left) generates a single strain rate determined by the motion of 
the upper plate. In contrast, pressure-driven pipe flow (right) generates multiple strain 
rates relating to local velocities. 

 
Pressure-driven pipe flow is how we generally move fluids in the real world, but it is more 
difficult to analyze than Couette flow, especially when turbulence is present. Fig. 2 (right) 
illustrates average local velocities in a pipe. A range of strain rates is exhibited, as given by 
the magnitude of the slope of 𝑣𝑣𝑧𝑧 (local axial flow velocity) vs. 𝑟𝑟 (radial position). Strain rate 
is zero in the center of the pipe and at a maximum value next to the wall of the pipe. Because 
there is a range of  �̇�𝛾 values in pipe flow, there is a range of 𝜏𝜏 values as well, in accord with 
Eq. 3.  
 
In pipe flow the things one generally knows (i.e. that can be measured) are the pressure drop 
Δ𝑃𝑃 for a section of pipe with length 𝐿𝐿 and diameter 𝐷𝐷, and the total volumetric flow rate �̇�𝑉. 
(In this document we express Δ𝑃𝑃 as a positive quantity, meaning upstream pressure minus 
downstream pressure.) Our goal is to determine enough about the non-Newtonian fluid that 
we could predict Δ𝑃𝑃 for any values of 𝐿𝐿, 𝐷𝐷, and  �̇�𝑉, so that we can estimate required pumping 
power.  
 
For pipe flow the most important shear stress to know is the value at the wall (𝜏𝜏𝑤𝑤) because 
this determines the pressure drop down the pipe, Δ𝑃𝑃. A force balance on the fluid gives 

�𝜋𝜋
4
𝐷𝐷2�  Δ𝑃𝑃 = (𝜋𝜋𝐷𝐷𝐿𝐿) 𝜏𝜏𝑤𝑤 (4)  

where the first set of parentheses gives cross-sectional area (the area that pressure acts on) and 
the second set of parentheses gives circumferential area (the area that wall shear stress acts 
on) for a section of pipe. Rearranging Eq. 4 gives 

 Δ𝑃𝑃 = �4𝐿𝐿
𝐷𝐷
�  𝜏𝜏𝑤𝑤 (5)  

 

As shown by Metzner and Reed (1955) for laminar flow one can solve for the wall shear 
stress for power-law fluids in terms of either pipe-average velocity 𝑣𝑣 or flow rate  �̇�𝑉. 
Applying Eq. 3 at the wall gives 

 τw = 𝐾𝐾 �̇�𝛾𝑤𝑤𝑛𝑛 (6)  

where  
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�̇�𝛾𝑤𝑤 = �3𝑛𝑛+1
4𝑛𝑛

� 8𝑣𝑣
𝐷𝐷

= �3𝑛𝑛+1
4𝑛𝑛

� 32�̇�𝑉
𝜋𝜋𝐷𝐷3

(7)  

Eqs. 5-7 can be combined to get  

Δ𝑃𝑃 = 𝐾𝐾 �
4𝐿𝐿
𝐷𝐷
��

3𝑛𝑛 + 1
4𝑛𝑛

�
𝑛𝑛

�
32�̇�𝑉
𝜋𝜋𝐷𝐷3�

𝑛𝑛

(8) 

To experimentally use the results of Metzner and Reed, one could run a series of laminar pipe 
flow experiments (on the same pipe) and measure Δ𝑃𝑃 as a function of �̇�𝑉. By taking the 
logarithm of both sides of Eq. 8, one can show that 

𝑛𝑛 = 𝑑𝑑 log(Δ𝑃𝑃)
𝑑𝑑 log(�̇�𝑉)

(9)  

In other words, one could plot log(�̇�𝑉) vs. log(Δ𝑃𝑃), and 𝑛𝑛 would be the slope of a straight-line 
fit to the data. Or, equivalently, one could perform a power-law fit to �̇�𝑉 vs. Δ𝑃𝑃, in which the 
fitted exponent is 𝑛𝑛. So it is possible to determine 𝑛𝑛, and once that is known, to determine 𝐾𝐾 
from Eq. 8 and the same set of laminar pipe flow experiments. 

Once 𝑛𝑛 and 𝐾𝐾 are known, Eq. 8 could be used again to predict pressure drop for new flow 
rates, pipe diameters, and lengths. 

 

Power-Law Fluid Behavior under Turbulent Flow 

Turbulent flow is more complicated than laminar flow, but similar principles can be used to 
analyze pressure drop or to determine constants 𝐾𝐾 and 𝑛𝑛, though with perhaps less certainty. 
It is helpful to define pressure drop for a section of pipe in terms of a friction factor, and in 
turn how friction factor depends on Reynolds number. 

The friction factor 𝑓𝑓 is a dimensionless quantity to express the pressure drop across a section 
of pipe: 

Δ𝑃𝑃 = 𝐿𝐿
𝐷𝐷

 𝑓𝑓 𝑃𝑃dyn (10)  

where dynamic pressure is 

𝑃𝑃dyn = 1
2
𝜌𝜌𝑣𝑣2 (11)  

The 𝑓𝑓 used in Eq. 10 is the Darcy/Moody/Blasius friction factor and not the Fanning friction 
factor (which is 4 times smaller). Eqs. 10 and 11 apply to any flow situation (e.g. laminar or 
turbulent, Newtonian or power-law) because they essentially just define 𝑓𝑓. 

In laminar flow of a Newtonian fluid, it can be shown that  

𝑓𝑓 =
64
Re

(12) 
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where the dimensionless Reynolds number is 

Re =
𝜌𝜌𝑣𝑣𝐷𝐷
𝜇𝜇

(13) 

Metzner and Reed defined a Reynolds number for power-law fluids, Re𝑀𝑀𝑀𝑀. It is defined so 
that Eq. 12 continues to be true for laminar flow of a power-law fluid. By comparing Eqs. 10-
12 with Eq. 8 it can be shown that 

Re𝑀𝑀𝑀𝑀 =
𝜌𝜌𝑣𝑣2−𝑛𝑛𝐷𝐷𝑛𝑛

𝐾𝐾 �3𝑛𝑛 + 1
4𝑛𝑛 �

𝑛𝑛
8𝑛𝑛−1

(14) 

 

In a subsequent paper, Dodge and Metzner (1959) provided experimental data for turbulent 
flow of multiple power-law fluids. They presented a Moody-type chart for relating 𝑓𝑓 to Re𝑀𝑀𝑀𝑀. 
Based on my interpretation of their results, the critical pipe Reynolds number at which flow 
transitions from laminar to turbulent is around 

Re𝑀𝑀𝑀𝑀,crit = 2200 𝑛𝑛−0.15 + 100 𝑛𝑛−2 (15) 

An explicit formula for turbulent friction factor I likewise developed from their data is 
 

𝑓𝑓 = (𝑎𝑎 Re𝑀𝑀𝑀𝑀)−𝑏𝑏 (16)
where 

𝑎𝑎 =
42𝑛𝑛1.4(𝑛𝑛1.4 + 2) + 0.033

𝑛𝑛1.4 + 0.211
(17) 

𝑏𝑏 = (1 + 413.6 𝑛𝑛)−0.23 (18) 

These expressions become equivalent, in the case of 𝑛𝑛 = 1, to the friction factor formula of 
Blasius (1913) for turbulent flow of a Newtonian fluid in a smooth pipe. Eqs. 16-18 can be 
considered physically reasonable for 0 < 𝑛𝑛 < 2 and Re𝑀𝑀𝑀𝑀,crit < Re𝑀𝑀𝑀𝑀 < 105, which 
encompass most situations of industrial interest.  

Eqs. 16-18 can be combined with Eqs. 10, 11, and 14, to produce a master equation that 
relates Δ𝑃𝑃 to  𝑣𝑣, 𝐷𝐷, 𝑛𝑛, and 𝐾𝐾. By this means, one could perform a fit of experimental data to 
determine 𝑛𝑛 and 𝐾𝐾 as was done in the laminar flow case. One could also predict Δ𝑃𝑃 for new 
turbulent flow situations once 𝑛𝑛 and 𝐾𝐾 are known. 

Fig. 3 illustrates predicted Δ𝑃𝑃 behavior for a power-law fluid in a particular section of pipe. 
Both the laminar and turbulent regimes are shown, where Eqs. 12 and 16 were respectively 
used. The transition region was determined from Eq. 15. As expected, pressure drop always 
increases with flow rate regardless of the type of fluid. The values of 𝑛𝑛 and 𝐾𝐾 and the flow 
regime (laminar vs. turbulent) determine the degree to which this happens.  
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Fig. 3. Predicted behavior of a power-law fluid (𝑛𝑛 = 0.5) in a section of pipe. 
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