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Chemical potential perturbation: A method to predict chemical potentials
in periodic molecular simulations
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A new method, called chemical potential perturbation (CPP), has been developed to predict the chem-
ical potential as a function of density in periodic molecular simulations. The CPP method applies a
spatially varying external force field to the simulation, causing the density to depend upon position in
the simulation cell. Following equilibration the homogeneous (uniform or bulk) chemical potential
as a function of density can be determined relative to some reference state after correcting for the
effects of the inhomogeneity of the system. We compare three different methods of approximating
this correction. The first method uses the van der Waals density gradient theory to approximate the
inhomogeneous Helmholtz free energy density. The second method uses the local pressure tensor to
approximate the homogeneous pressure. The third method uses the Triezenberg–Zwanzig definition
of surface tension to approximate the inhomogeneous free energy density. If desired, the homoge-
neous pressure and Helmholtz free energy can also be predicted by the new method, as well as binodal
and spinodal densities of a two-phase fluid region. The CPP method is tested using a Lennard-Jones
(LJ) fluid at vapor, liquid, two-phase, and supercritical conditions. Satisfactory agreement is found
between the CPP method and an LJ equation of state. The efficiency of the CPP method is com-
pared to that for Widom’s method under the tested conditions. In particular, the new method works
well for dense fluids where Widom’s method starts to fail. © 2011 American Institute of Physics.
[doi:10.1063/1.3561865]

I. INTRODUCTION

The chemical potential can be related to many different
phenomena1, 2 such as phase equilibria, including solubility
and osmosis, transport processes such as diffusion, as well as
chemical reaction rates. These phenomena are important in
the design of many industrial processes. Methods to predict
the chemical potential, such as statistical mechanical compu-
tations, are particularly useful when experimental data are dif-
ficult to obtain.

There are multiple ways to get chemical potentials and
other free-energy-related properties from statistical mechani-
cal computations. For instance, one can use thermodynamic
integration, Widom’s method, and free-energy perturbation
methods in general.3 However, some of these methods such
as Widom’s may become increasingly inefficient or even fail
as the density of the simulation is increased.3, 4

Widom proposed a simple and elegant method to cal-
culate the chemical potential.3, 5–7 For homogeneous, pure-
component NVT systems,

μex = −kB T ln

〈
exp

(
− �U

kB T

)〉
, (1)

where μex is the chemical potential in excess of an ideal
gas, T is the system temperature, kB is Boltzmann’s constant,
�U is the hypothetical energy of insertion of a test-particle,
and 〈. . .〉 denotes the canonical average. Widom’s method
becomes less efficient for dense systems because the proba-
bility of a favorable test-particle insertion (little or no over-
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lap with neighboring particles) is low. Related to Widom’s
method is Bennett’s (or the overlapping distribution) method,
which uses both hypothetical insertions and deletions to cal-
culate μex.3, 8 Several methods have been proposed to increase
the efficiency of Widom’s and Bennett’s methods for dense
systems.9–13

Other methods also seek to overcome the limita-
tions of Widom’s method, including staged-insertion,14 um-
brella sampling,13, 15 expanded ensembles,16, 17 thermody-
namic integration,3 and histogram-distribution methods.18

These methods can be much more efficient and accurate than
Widom’s method, but may likewise become less computa-
tionally efficient with structured molecules or as the density
of the system is increased. For a review of these methods
see Ref. 19.

Two Monte Carlo (MC) methods are particularly re-
lated to this work. Grand canonical Monte Carlo (GCMC)
(Ref. 3) imposes constant chemical potential, temperature,
and volume on the system and measures the resulting com-
position. The chemical potential of an ideal gas reservoir,
which can be calculated analytically, is set, and the simula-
tion cell is equilibrated with the reservoir by changing the
number of molecules in the simulation cell. After equilibra-
tion, the chemical potential of the simulation cell is equal to
the known chemical potential of the reservoir.

Gibbs ensemble Monte Carlo (GEMC) (Refs. 3, 20, and
21) uses two simulation cells to equilibrate two phases.
The temperature, volume, and total number of molecules of
the system remain fixed, but molecules and volume are ex-
changed between the two simulation cells. After equilibration,
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FIG. 1. (a) Snapshot of CPP simulation 1. (b) Uext(z) and ρ(z) vs position z.

the chemical potentials of the two cells are equal. For pure-
component fluids, each cell contains either the liquid or vapor
phase, and the coexisting densities of the fluid can be deter-
mined. GEMC avoids the formation of an interface between
the two phases. Like all MC methods, GCMC and GEMC rely
on particle insertions and deletions and become increasingly
inefficient as the density of the system increases.

One can also directly simulate phase equilibria using
molecular simulations. Unlike GEMC simulations, an inter-
facial region may form between different phases. This allows
the prediction of interfacial properties such as surface tension.
(For a review of methods used to obtain surface tension in
molecular simulations, see Ref. 22.) However, the presence
of an interface may also increase computational cost if this is
not the region of interest.3 The simulation cell is usually elon-
gated in one direction to form a stable interface.23 Due to the
presence of density gradients, standard long-range corrections
and cut-offs may no longer be adequate.22

Another alternative to insertion-based methods is os-
motic molecular dynamics (OMD), developed by Rowley and
co-workers.24, 25 OMD uses a semipermeable membrane to
achieve chemical equilibrium between two compartments on
either side of the membrane. For pure-component systems,
the respective compartments contain the fluid at the desired
density and the same fluid at a very low density to serve as an
ideal gas reference. For liquid mixtures, the respective com-
partments contain the mixture at the desired composition and
the pure liquid as a reference. Tagged molecules are allowed
to pass freely through the membrane, while others are com-
pletely restricted to one side by a soft-wall external potential
until equilibrium is achieved. Homogeneous properties are

obtained by excluding inhomogeneous portions of the sim-
ulation close to the membrane region.

Powles et al. also used a molecular dynamic (MD) sim-
ulation with an external potential to create a low-density
fluid pocket surrounded by a high-density fluid region.26 The
chemical potential was then measured in the low-density re-
gion using Widom’s method, allowing one to predict the
chemical potential of the high-density region after removing
the effects of the external field.7 No correction due to the in-
homogeneity of the system was necessary because the high-
density region was virtually homogeneous.

The chemical potential perturbation (CPP) method pro-
posed here can be thought of as a generalization of OMD
and the method of Powles et al. The CPP method uses a fi-
nite external potential which varies periodically in one direc-
tion, matching the periodic boundary conditions of the simu-
lation cell. Under the action of this field, the density similarly
varies throughout the cell in a periodic fashion. For example,
Fig. 1 shows a snapshot of CPP simulation 1 (described be-
low), produced using the VMD software program.27 Figure 1
also shows the external potential U ext(z) and resulting density
profile ρ(z) of this simulation versus position z.

The CPP method is also related to GCMC and GEMC.
Molecules in each differential slice of the CPP simulation are
exchanged between neighboring slices, similar to a GEMC
simulation. In GCMC, the chemical potential of the system is
fixed and the density of the simulation cell is measured after
equilibration. In CPP, the external potential is fixed and the
density at each location z is then measured after equilibra-
tion. We implemented CPP within MD simulations, although
it could be used in MC simulations as well. MD simulations
avoid particle insertions and more readily allow one to simu-
late very dense phases.

When one performs an inhomogeneous molecular simu-
lation, it is normally with the intention to obtain phase equi-
libria properties such as coexisting liquid–vapor densities or
interfacial properties such as surface tension. In contrast, with
CPP a single inhomogeneous simulation is used to obtain ho-
mogeneous (uniform or bulk) properties for the whole range
of densities found in the inhomogeneous simulation.

Below, we develop the CPP method for pure-component
systems and explain how to correct for effects on the chemi-
cal potential due to the inhomogeneity of the fluid. We show
results for the Lennard-Jones fluid at vapor, liquid, two-phase,
and supercritical conditions.

II. DEVELOPMENT OF THE CPP METHOD

We desire to obtain the chemical potential of a homoge-
neous fluid corresponding to each density found in an NVT
simulation of an inhomogeneous fluid. A simulated fluid may
be inhomogeneous due to spontaneous phase splitting, or may
be inhomogeneous due to the effects of an external potential
acting on the system, or both. In any case, it is necessary to
correct for the effects resulting from the inhomogeneity of the
system to obtain homogeneous properties.

According to concepts found in density functional
theory,28 one can divide the properties of inhomoge-
neous fluids into both local and nonlocal terms. Local, or
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homogeneous, terms depend only on the condition of the fluid
at position r in the simulation cell. Because molecules interact
over a finite distance, however, the condition at one location
affects that of other locations. Nonlocal, or inhomogeneous,
terms capture this effect and depend upon the condition of the
fluid in the vicinity of position r. For example, surface ten-
sion is a manifestation of nonlocal effects. We describe below
how to obtain homogeneous properties using three different
methods.

A. Van der Waals density gradient theory

Van der Waals (VdW) developed a density gradient the-
ory that can be used to predict the surface tension and den-
sity profile of an inhomogeneous fluid if the density profile is
sufficiently slowly varying.29–31 Van der Waals proposed that
the local free energy density consists of two terms: the homo-
geneous free energy density and the inhomogeneous free en-
ergy density, which depends on the density gradient squared.
This theory was later rediscovered by Cahn and Hilliard,32

and Yang et al. obtained a similar result from a rigorous ex-
pansion in powers of density derivatives.33

Using density gradient theory, an analytical equation of
state can be used to predict the surface tension and density
profile of an inhomogeneous fluid.30, 34 In other words, infor-
mation about a homogeneous system is used to predict inho-
mogeneous or interfacial properties. In the CPP method, the
reverse is used: the density profile and other information per-
taining to a simulated inhomogeneous system is used to obtain
homogeneous properties.

We follow the work of Yang et al. and define the total
Helmholtz free energy F tot of the system as the volume inte-
gral of the Helmholtz free energy density ψ tot(r), or

F tot =
∫

ψ tot(r) dr. (2)

For an inhomogeneous system with an external potential
U ext(r), the free energy density can be partitioned into multi-
ple contributions:

ψ tot(r) = U ext(r) ρ(r) + ψ0(r) + ψ IH(r), (3)

where ρ is the molecular number density. ψ0 is the free energy
density of a homogeneous fluid with temperature and density
the same as the inhomogeneous fluid at position r and is a lo-
cal term. ψ IH is the excess free energy density due to the inho-
mogeneity of the system and is a nonlocal term. Throughout
this work, we assume the density varies only in the z direction.
Equation (3) then becomes

ψ tot(z) = U ext(z) ρ(z) + ψ0(z) + ψ IH(z). (4)

Yang et al. rigorously showed that a density gradient term
can be used to approximate ψ IH(z) as

ψ IH(z) = 1

2
c(ρ) ρ ′(z)2 + O(∇4ρ), (5)

where ρ ′(z) = dρ/dz and c(ρ) is called the influence param-
eter and is given as

c (ρ) = 2

3
π kB T

∫
dr12 r4

12 C0 (r12, ρ) , (6)

where r12 is the molecular pair-wise distance and C0 (r12, ρ)
is the direct correlation function of a homogeneous fluid. The
influence parameter c may be also taken to be an empirical
constant (independent of temperature and density),34 as is the
case in this work unless otherwise noted. In Eq. (5), the nota-
tion O(∇4ρ) refers to the order of the truncation error, mean-
ing that the neglected terms are proportional to products of
density derivatives whose orders sum to 4 or greater. We in-
clude this term as a reminder that higher order terms have
been neglected in gradient theory.

Equations (3) and (4) do not necessarily describe a sys-
tem at equilibrium. If we assume equilibrium, then F tot will
be minimized subject to the constraints of constant volume V
and a fixed number of molecules N . One can use the solution
to the Euler-Lagrange equation to minimize F tot with these
constraints.33 This leads to

μtot = U ext(z) + μ0(z) + μIH(z), (7)

where μtot is the total chemical potential, which is constant
at all locations inside the simulation cell, μ0 is the homo-
geneous chemical potential, and μIH is the inhomogeneous
chemical potential. The intrinsic chemical potential μint is
defined as μint(z) = μ0(z) + μIH(z). We note that Widom’s
method when applied to an inhomogeneous system gives μint,
not μ0.7, 31

Using the Euler–Lagrange equation and the approxima-
tion for ψ IH given in Eqs. (5) and (6) gives33

μIH(z) = −1

2

∂c(ρ)

∂ρ
ρ ′(z)2 − c(ρ) ρ ′′(z) + O(∇4ρ), (8)

where ρ ′′(z) = d2ρ/dz2.
Rearranging Eq. (7) yields

μ0(z) = −U ext(z) − μIH(z) + μtot. (9)

In the CPP method, U ext is fixed. In this work, the combina-
tion of Eqs. (8) and (9) with c taken to be an empirical con-
stant constitute the VdW method. Using this method, μ0(z)
can be determined to within a constant, μtot, discussed below.

For pure-component systems at constant temperature,31

ψ0(ρ) =
∫

μ0(ρ) dρ − P∗, (10)

where P∗ is a constant of integration. In the absence of an ex-
ternal field, P∗ is equal to the hydrostatic pressure of the sys-
tem. If desired, the homogeneous Helmholtz free energy den-
sity at equilibrium ψ0 can be obtained from the VdW method
by multiplying Eq. (9) by dρ/dz according to Eq. (10) and
integrating with respect to z:

ψ0(z) = −
∫

U ext(z)
dρ(z)

dz
dz + ψ IH(z) + μtot ρ(z)

−P∗ + O(∇4ρ), (11)

where we have used Eqs. (5) and (8) as well. From the re-
lationship between Gibbs and Helmholtz free energies, the
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homogeneous pressure P0 of a pure-component fluid can be
defined as

P0(z) = μ0(z) ρ(z) − ψ0(z). (12)

The system constants μtot and P∗ can be determined in
two ways. First, if the density is low enough at some posi-
tion in the CPP simulation, they can be determined from the
ideal gas chemical potential and pressure. Otherwise, an addi-
tional homogeneous simulation using Widom’s method or an
equation of state (EOS) can be used to determine the chemical
potential and pressure at one density found in the CPP simu-
lation. Alternatively, one could determine μtot by performing
Widom insertions at one location in the CPP simulation (gen-
erally the planar slice with the lowest density).

B. Pressure tensor

In this section, we describe how to calculate the inhomo-
geneous pressure tensor P(z) and show how to approximate
corresponding homogeneous properties.

1. Calculation of the pressure tensor

The virial equation can be used to obtain the pressure ten-
sor. Assuming thermal equilibrium, for our system P(z) can
be expressed as35

P(z) = kB T ρ(z) I + 1

V

∑
i

∑
j<i

fi jn (ri jn)Tτi jn(z), (13)

where I is the identity matrix, the notation i jn means that
the nearest-image convention is used in conjunction with pe-
riodic boundary conditions between molecules i and j , ri jn is
the molecular pair-wise distance, and fi jn is the intermolec-
ular force. The superscript T refers to the matrix transpose,
in this case turning a column vector into a row vector. The
double sum is over all unique molecular pairs in the system
employing a spherical cut-off based on distance ri jn .

τi jn(z) is the contour function that controls how the pres-
sure is distributed spatially with respect to each interacting
pair of molecules. The pressure tensor has a well known
ambiguity on this issue. There are an infinite number of
ways to define the contour,36 but the contours given by Irv-
ing and Kirkwood (IK) (Ref. 35) and Harasima37 (see also
Ref. 38), are most commonly used. We use the IK contour in
this paper, which distributes the pressure uniformly along a
straight line connecting the interacting pair of molecules (in
the nearest-image sense). There are multiple ways to express
this mathematically.39, 40 We use

τi jn(z) = Lz

zi jn
[�(z − zi ) − �(z − z j )] + �i j

zi jn
, (14)

where � is the Heaviside step function, Lz is the length
in the z direction, �i j = −Lz trunc [2(z j − zi )/Lz], zi jn

= z j − zi + �i j , and trunc(x) is the truncation function that
removes the fractional part of x and returns the integer part. In
practice, P(z) is calculated with the IK contour using a finite
number of slabs normal to the z direction. The Ns slabs that

contain any part of the line connecting the two molecular cen-
ters of mass are determined, and each of these slabs is given
1/Ns of the total contribution of pressure from a given pair
interaction.41

For our system, there are two independent components
of the pressure tensor: one normal to the interface, PN(z)
= Pzz(z), and one tangential to the interface, PT(z)
= Pxx (z) = Pyy(z).

2. Restrictions on the normal pressure

For a fluid at equilibrium, mechanical stability introduces
a restriction on the normal pressure. In the case of our system,

d PN(z)

dz
= ρ(z) f ext(z), (15)

where f ext(z) = −dU ext(z)/dz is the external force acting on
the particles in the system.31

Equation (15) can be integrated to obtain

PN(z) =
∫

ρ(z) f ext(z) dz + P∗. (16)

For a system at equilibrium, ψ0 is given by Eq. (11).
We can eliminate the integral in Eq. (11) using integration
by parts with the help of Eq. (16), giving

ψ0(z) = −U ext(z) ρ(z) − PN(z) + ψ IH(z) (17)

+μtot ρ(z) + O(∇4ρ).

Combining Eqs. (9), (12) and (17) and rearranging yields

PN(z) = P0(z) + ψ IH(z) + μIH(z) ρ(z) + O(∇4ρ). (18)

Like Eq. (15), Eq. (18) can also be used to verify that the
system is at mechanical equilibrium.

3. Obtaining homogeneous properties

For the IK definition of pressure tensor, a Taylor series
expansion in density gradients predicts that

PN(z) = P0(z) + k

[
1

2
ρ ′(z)2 − ρ ′′(z) ρ(z)

]
+ O(∇4ρ),

(19)
and

PT(z) = P0(z) + 1

3
k

[
1

2
ρ ′(z)2 − ρ ′′(z) ρ(z)

]
+ O(∇4ρ),

(20)
where k is a constant that depends on the intermolecular po-
tential and radial distribution function of the fluid.28 (See
also Refs. 42 and 43.) In fact, k can be calculated from c
[Eq. (6)] used in VdW gradient theory with the use of certain
approximations.28

If U ext(z) = 0, then PN is constant at all locations in the
system, even if there are two phases and an interface present,
as shown by Eq. (15). The chemical potential μint given by
Widom’s method is also constant in the absence of an external
field as shown by Eq. (7). However, if two phases are present,
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PT, P0, and μ0 may vary throughout the interface, and P0 and
μ0 will furthermore exhibit a van der Waals loop.

Combining Eqs. (19) and (20) and solving for P0 yields

P0(z) = 3

2
PT(z) − 1

2
PN(z) + O(∇4ρ). (21)

It is not necessary to determine the constant P∗ if the IK ex-
pressions for pressure [Eqs. (13) and (14)] are used.

Once we have determined P0, we can obtain μ0 using the
definition of Gibbs free energy (at constant temperature):

μ0(z) =
∫

d P0(z)

dz

1

ρ(z)
dz + μtot. (22)

In this paper, we refer to the use of Eqs. (21) and (22) as
the pressure tensor method of obtaining μ0. If desired, the
free energy density can be obtained from the pressure tensor
method by rearranging Eq. (12).

C. TZ method

Here, we show a third method to obtain homogeneous
properties using a relation between the surface tension γ and
ψ IH. Working equations for surface tension often include a
factor of 1/2 to account for the fact that two interfaces are
formed in periodic molecular simulations. However, for sim-
plicity, the equations in this section assume a single interface.
For a nonperiodic system, the integrals over system length
range between ±∞, and for a periodic system, they range be-
tween 0 and Lz .

1. Surface tension

The surface tension is related to the pressure tensor ac-
cording to35

γ =
∫

[PN(z) − PT(z)] dz. (23)

The total grand potential 
tot can be defined as


tot = A
∫

[ψ tot(z) − μtot ρ(z)]dz. (24)


tot is also related to PT as44, 45


tot = −A
∫

PT(z)dz. (25)

Combining Eqs. (4) and (17), and (23)–(25) gives

γ = 2
∫

ψ IH(z) dz + O(∇4ρ). (26)

Equation (26) can also be derived in a more familiar man-
ner for a system without an external potential.28, 33 Combining
Eqs. (2) and (4), and (17) gives

F tot = 2A
∫

ψ IH(z) dz − PV + μtot N + O(∇4ρ). (27)

A definition of surface tension in the absence of an external
potential is

γ =
(

∂ F tot

∂ A

)
T,N ,V

. (28)

Combining Eqs. (27) and (28) gives Eq. (26).

2. Obtaining homogeneous properties

It is tempting to assume that the integrands in
Eqs. (23) and (26) are equal locally, allowing one to obtain
2ψ IH(z) from PN(z) − PT(z). This is true of the form of the
pressure tensor first proposed by Lovett.33, 46, 47 This form fur-
thermore satisfies the mechanical stability restriction placed
on PN given in Eq. (18). However, no contour [such as the
IK contour given in Eq. (14)] or virial-type expression was
given to calculate this form of P(r) in a discrete-particle sys-
tem. Simulations show that this approach does not work for
the IK pressure tensor (see Fig. 4 below). This is because
PN(z) − PT(z) calculated using the IK contour and 2ψ IH(z)
differ by some function that integrates to zero over the length
of the system in the z direction.

Another expression for γ was obtained by Triezenberg
and Zwanzig48 (TZ). (See also Ref. 49 for an independent
derivation.) For our system,

γ = 1

2
π kB T

∫
dz ρ ′(z)

∫
dz2 ρ ′ (z2)

∫
ds s3 C (z, z2, s) ,

(29)

where s =
√

x2
12 + y2

12 and C (z, z2, s) is the inhomogeneous
direct correlation function.

Combining Eqs. (26) and (29) without integrating over
dz yields

ψ IH(z) = 1

4
π kB T ρ ′(z)

∫
dz2 ρ ′ (z2)

∫
ds s3 C (z, z2, s)

+�TZ(z) + O(∇4ρ), (30)

where
∫

�TZ (z) dz = 0.
The expressions for ψ IH given by Eq. (30) and the VdW

method are closely related: If we approximate C (z, z2, s)
as the homogeneous direct correlation function C0 (r12, ρ(z))
and expand ρ ′ (z2) around ρ ′ (z) using a Taylor series, then
the resulting first term of the series is equal to Eq. (5) with
c (ρ) given by Eq. (6).31, 50 Furthermore, with these approxi-
mations, �TZ(z) = O(∇4ρ). As a practical matter, we assume
�TZ(z) = 0 in Eq. (30). Simulation results (below) confirm
this as reasonable.

The use of Eq. (30) requires the inhomogeneous direct
correlation function. Obtaining inhomogeneous direct corre-
lation functions directly from simulations51–53 and integral
equation theory54, 55 has been discussed previously, but this
was beyond the scope of this paper. Instead, we used the ho-
mogeneous direct correlation function at an average density to
approximate the inhomogeneous direct correlation function as

C (z1, z2, s) = C0 (r12, ρ̄) , (31)

where ρ̄ = [ρ (z1) + ρ (z2)] /2. This approximation has been
used previously for the LJ fluid with satisfactory results.56
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We furthermore estimated the homogeneous direct cor-
relation function using the homogeneous Ornstein–Zernicke
(OZ) equation57 with the Percus–Yevick (PY) closure
relation.58 A solution was effected by the method of Gillian59

and a computer code adapted from Lee60 with a grid spacing
of �ρ∗ = 0.01 and �r∗ = 0.05 (quantities defined below).
The double integral in Eq. (30) was evaluated numerically for
250 points in the z direction. The ψ IH values at these points
were then fit versus density using a polynomial with 15 coef-
ficients.

Given ψ IH from Eq. (30) and the approximation in
Eq. (31), one can calculate ψ0 using Eq. (17) and μ0 using
Eq. (10). In this paper, we refer to this as the TZ method of
obtaining μ0. If desired, one can use the TZ method to calcu-
late P0 using Eq. (12).

D. Long-range corrections

When simulating homogeneous systems of Lennard-
Jones (LJ) particles using MD simulations, the intermolecular
force is usually truncated at some radial distance rc, and stan-
dard long-range corrections (LRCs), which assume the radial
distribution function is unity for r ≥ rc, are applied to the en-
ergy and pressure terms at the end of the simulation.61 Long-
range forces cancel by symmetry, so there is no LRC applied
to the forces for a homogeneous or isotropic system.

However, for an inhomogeneous simulation, the correc-
tions of energy, force, and pressure tensor are nonlocal terms
which depend on the condition of the surrounding fluid. Long-
range forces no longer cancel, and a correction to the forces
must be applied at every timestep to obtain the correct den-
sity profile. For homogeneous LJ simulations, rc = 2.5σ is
considered reasonable, where σ is the LJ distance parameter.
However, the phase behavior, including the critical point, of
an inhomogeneous LJ fluid depends highly upon the cutoff
distance for rc < 5.5σ if no long-range forces are applied.62

In this work, we use rc = 5.5σ to account for the in-
homogeneity of the system. To account for interactions be-
yond this cutoff, the standard homogeneous LRC to pressure,3

evaluated at ρ(z), is also applied to P0(z). More accurate al-
ternatives exist,22 such as slab-based methods63 or a lattice
sums,64, 65 but these are more computationally expensive. We
plan to investigate the effects of different LRC techniques on
the CPP method and extend the CPP method to Coulombic
interactions in a subsequent paper.

III. SIMULATION DETAILS

In order to test the results of the proposed methods, we
selected and simulated supercritical, two-phase, vapor, and
liquid conditions for a pure-component LJ fluid with ε and
σ being the respective energy and distance parameters. Re-
sults in this work are given in reduced LJ units as z∗ = z/σ ,
T ∗ = kB T/ε, ρ∗ = ρ σ 3, ψ∗ = ψ σ 3/ε, γ ∗ = γ σ 2/ε, μ∗

= μ/ε, c∗ = c/(ε σ 5), and t∗ = t/
√

σ 2 m/ε.
The molecular dynamics method was used. The equa-

tions of motion included an integral-control (Nosé-Hoover)
thermostat and were integrated using a 4th-order Gear
predictor-corrector scheme.61 The size of the time step was
selected for each simulation to generate a root-mean-square

displacement of molecules of 0.003σ per timestep. A Verlet
neighbor list was used to speed up computations.61

The external potential was of the following form consis-
tent with periodic boundary conditions:

U ext(z) = �Umax

2
cos

(
2π z

Lz

)
, (32)

where �Umax is an adjustable parameter corresponding to the
maximum difference in external potential. �Umax also corre-
sponds to maximum difference in μint as shown by Eq. (7).
Changing �Umax and the average density of the system ρavg

allows one to control the range of densities obtained in a CPP
simulation. In this work, we used an iterative process or an
equation of state to determine �Umax and ρavg which give a
desired range of densities. Though not done here, one could
use an NPT ensemble to control the average density of the
system and a feedback control system for the external field to
achieve a desired density profile.

The CPP method applies a continuous, spatially-varying
external field to the system. This causes a continuous change
in the density profile. Therefore, the CPP method essentially
gives the density profile and resulting chemical potential as
continuous curves. Any discretization used is for convenience
in postprocessing the results. Samples for density and pres-
sure profiles were taken every 8 timesteps and were collected
using 401 equally spaced slabs normal to the z direction.

Resulting pressure and density profiles were each fit us-
ing a Fourier cosine series, as this automatically satisfies the
periodicity and symmetry of the system. Additionally, limit-
ing the number of terms in the Fourier cosine series worked
well to screen out noise and smooth the data. Figure 2 shows
an example of a Fourier cosine series used to fit the data. Us-
ing too few Fourier coefficients results in a poor fit of the
data or oscillations near sharp changes in the profiles (such
as the change in density at an interface between two phases),
which biases the results. Using too many Fourier coefficients
increases the random noise in the results. Using both a slab-
based histogram and a Fourier fit allowed us to check the rea-
sonableness of the fit while smoothing out random error. In
order to check that our results were independent of the num-
ber of slabs used, we increased the number of slabs from 401
to 701 for the CPP 2 and 3L simulations (described below).

FIG. 2. An example of a Fourier fit used to smooth the density profile.
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TABLE I. Parameters fopcthe CPP simulations shown in this work. Type SC refers to supercritical, 2φ refers to two-phase, Vap refers to vapor, and Liq refers
to liquid.

Name Type N Lz
Lx =L y

T ∗ ρ∗
min ρ∗

avg ρ∗
max �U∗

max timesteps

1 SC 2 × 103 2 1.5 0.043 0.437 0.749 5.0 5 × 106

1L SC 104 10 1.5 0.044 0.437 0.751 5.0 106

2 SC 4 × 103 4 2.0 0.011 0.632 1.05 28.5 106

3 2φ 103 1 0.8 1.68 × 10−3 0.403 0.847 2.0 2 × 106

3L 2φ 4 × 103 4 0.8 1.49 × 10−3 0.403 0.848 2.0 2 × 106

4 Vap 103 1 0.8 8.35 × 10−4 2.44 × 10−3 4.98 × 10−3 1.39 5 × 106

5 Liq 4 × 103 2 0.8 8.02 8.54 8.99 2.15 2 × 106

These simulations contain relatively sharp changes in density
profile, and yet increasing the number of slabs did not signif-
icantly alter the μ0(z) curves.

When assessing the results of a method, it is important to
consider both random errors and systematic bias. Sources of
random errors in the CPP method include noise in the mea-
sured density and pressure tensor profiles. Sources of biases
in the CPP method include truncation errors in the Fourier se-
ries used to fit the profiles and truncation errors in the Taylor
series expansions used to approximate μIH.

Random errors were estimated using the block method.
Each simulation was divided into ten blocks, which were used
to calculate 95% confidence intervals (CIs) of the data using
the Student’s t-distribution. In the CPP method, both the mea-
sured density and chemical potential vary at a given position.
The variation in chemical potential is due to the correction
for the inhomogeneity of the system. Thus a plot of μ vs ρ

requires error bars in both directions. We plotted these error
bars for several points along the curves in order to give the
reader a sense of the random errors in the simulations.

In order to estimate the bias in the CPP method, we used
an equation of state (EOS) for the LJ fluid proposed by Kolafa
and Nezbeda,66 as well as Widom’s method [see Eq. (1)]. This
LJ EOS and Widom’s method both give the chemical poten-
tial in excess of an ideal gas. In order to obtain the full chem-
ical potential, it is necessary to include the ideal gas chemical
potential μig given in reduced LJ units as

μig ∗(z) = T ∗ ln

[(
h∗ 2

2 π T ∗

)3/2

ρ∗(z)

]
, (33)

where h∗ = h/
√

σ 2ε m, h is Planck’s constant, and m is
the particle mass. For purposes of presentation, we used h∗

= 0.183, obtained by using typical LJ parameters for argon.
The CPP method gives differences in chemical potentials

as a function of density. Another method such as Widom’s
or an EOS is needed to determine the unknown constant (or
offset) μtot. In this work, μtot was determined by shifting the
μ0(z) curve vertically until it matched the LJ EOS at ρavg (un-
less otherwise noted). Because μ0 is fixed at this point, the ap-
parent error at this point will be zero. Alternatively, we could
have determined μtot by performing Widom insertions in one
slice of the CPP simulation or in a separate homogeneous sim-
ulation at one density contained in the CPP simulation. It was
not necessary to determine P∗ because the IK method was
used to calculate the pressure tensor.

IV. SIMULATION RESULTS AND DISCUSSION

Table I shows the parameters for the CPP simulations
presented in this work. For reference, the critical tempera-
ture of the LJ fluid is around T ∗ = 1.326.67 In order to al-
low other researchers to verify, repeat, and assess our results,
we have included a spreadsheet containing a copy of the nu-
merical data used to create our figures in the supplemental
materials.68

A. Supercritical simulations

In the absence of an external field, a pure-component
fluid at temperatures above its critical temperature will not
spontaneously split into different phases. However, the addi-
tion of a spatially varying external potential produces equilib-
rium density gradients (and therefore surface tension as pre-
dicted by density gradient theory).

A snapshot, as well as the external potential and density
profile versus position z, of CPP simulation 1 are shown above
in Fig. 1. If no external field were present, this simulation
would have the uniform density ρ∗

avg shown in Table I. We
used Eq. (15) to verify the system was at mechanical equilib-
rium and that PN was calculated accurately using Eqs. (13)
and (14). Agreement between left-hand and right-hand sides
of Eq. (15) was essentially exact.

Figure 3 shows the resulting homogeneous chemical po-
tential using the three different approximations of μIH, as well
as the μIH curves themselves. Results are validated by com-
paring to those for the LJ EOS. The curve labeled as LJ EOS
in Fig. 3(b) is estimated using Eq. (9) with μ0 given by the LJ
EOS. For this system, the most accurate method of approxi-
mating μIH is the pressure tensor method, and the TZ method
also works well. The VdW method is not as satisfactory, but
does show the correct trend.

Figure 4 shows profiles of inhomogeneous free energy
density versus position for CPP simulation 1 predicted us-
ing the VdW and TZ methods. For the VdW method, we
used a value of c∗ = 4.4 (constant with respect to density).34

Figure 4 also shows [PN(z) − PT(z)]/2 calculated using the
IK contour is not equivalent to the predicted ψ IH(z). Cal-
culating the apparent (induced) surface tension using the
TZ equation [Eq. (29) and the approximation given in
Eq. (31)] gave γ ∗

TZ = 0.357 ± 0.001. Using the pressure
tensor [Eq. (23)] gave γ ∗

IK = 0.311 ± 0.015. When an
inhomogeneous long-range correction63 was included with
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FIG. 3. (a) Homogeneous chemical potential vs density for CPP simulation
1 using three different approximations of μIH(z). (b) Comparison of the dif-
ferent approximations of μIH(z) vs density. Density error bars are not shown
for the VdW and TZ curves, but are identical to those shown for the pressure
tensor curve.

the pressure tensor, γ ∗
IK = 0.362 ± 0.015, producing better

agreement between the two methods and further validating
the approximation given in Eq. (31). The VdW method pre-
dicted a surface tension of γ ∗

VdW = 0.319 ± 0.001.
In order to test the influence of simulation cell length,

we repeated CPP simulation 1 with length in the z direction
increased by a factor of 5 (see Table I). We refer to this sim-

FIG. 4. Plot of inhomogeneous free energy density vs position for CPP
simulation 1 predicted using the VdW and TZ methods. The quantity
[PN (z) − PT (z)] /2 (calculated using the IK contour) is also shown, which
does not match the predicted ψ IH(z).

FIG. 5. Comparison of homogeneous chemical potential vs density for CPP
simulations 1 and 1L. Simulation 1L is 5 times longer in the z direction than
simulation 1. Density error bars for the CPP1 curve with the pressure tensor
correction are not shown but are identical to those shown for the CPP1 curve
without a correction.

ulation as 1L (where L stands for long). Figure 5 shows that
increasing Lz decreases μIH as expected from gradient theory.
The CPP 1 simulation (without a correction for the inhomo-
geneity of the system) has much greater error than the CPP 1L
simulation (also without a correction). In theory, one could
increase the length of the simulation cell until μIH becomes
negligible. However, Fig. 5 also shows that if an appropriate
gradient correction for μIH is used, one can obtain satisfac-
tory results using a much shorter simulation cell. Obviously,
if the simulation cell is too short, the correction becomes less
reliable due to large density gradients. Furthermore, the use of
large external field gradients can produce anomalous layering
structures in the fluid.

The TZ and VdW methods take the derivative of ψ0 to
get μ0, which may magnify noise in the data. The pressure
tensor method integrates P0 to get μ0, which may smooth out
noise in the data. Also, the pressure tensor is relatively easy to
calculate. Therefore, the pressure tensor method to obtain μ0

is the preferred method in this work and is used exclusively in
the following results.

Figure 6 shows the results of supercritical CPP simula-
tion 2 using a higher temperature and field strength than simu-
lation 1. The highest density in this simulation was essentially
at the liquid-solid coexistence point of liquid ρ∗ = 1.06.69

Figure 6 also shows the results of homogeneous simulations
using Widom’s method [Eq. (1)] for 12 discrete densities.
These simulations included 103 particles and were run for
106 timesteps after equilibration. 103 insertions at random lo-
cations were performed every 8 timesteps. Each simulation
was broken into ten blocks, which were used to calculate
95% CIs (using the Student’s t-distribution) shown as error
bars in Fig. 6. The simulations used rc = 2.5σ , and the stan-
dard LRC for chemical potential3 was included. Relative error
ε = (μ0 − μ0

LJ EOS)/ � U ∗
max is also shown for the CPP and

Widom’s methods in Fig. 6.
The CPP method and Widom’s method have different

convergence properties. Widom’s method converges rapidly
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TABLE II. Predicted binodal and spinodal densities at T ∗ = 0.8 from CPP simulations 3 and 3L and the
LJ EOS.

Binodal ρ∗ Spinodal ρ∗

vapor liquid vapor liquid
CPP 3 0.00413 ± 0.00019 0.805 ± 0.003 0.0512 ± 0.0027 0.673 ± 0.005
CPP 3L 0.00356 ± 0.00053 0.802 ± 0.001 0.0467 ± 0.0023 0.660 ± 0.005
LJ EOS 0.00608 0.800 0.0654 0.654

for lower densities but converges more slowly as the density
of the system is increased. For this system, Widom’s method
starts to become biased above around ρ∗ = 0.9, where the
probability of a favorable insertion is comparatively low. The
total CPU time (after equilibration) used in the 12 Widom
simulations was close to that of CPP simulation 2. One could
further optimize the efficiency of Widom’s method by sam-
pling less at lower densities and more at higher densities.
However, the spherical LJ model represents a best-case sce-
nario for Widom’s method; Widom’s method converges even
more slowly for large or structured molecules. The CPP
method seems to work well for low and high densities. The
CPP method also gives a whole curve in a single simulation,
while several simulations at different densities using Widom’s
method are necessary to obtain comparable results.

FIG. 6. (a) Homogeneous chemical potential vs density for CPP simulation
2. Results from Widom’s method are also shown. (b) Relative error as com-
pared to the LJ EOS. The error bar visible at the lowest density is for the CPP
method. Density error bars for the CPP method are not shown in (a) but are
identical to those shown in (b).

B. Subcritical simulations

1. Two-phase systems

In simulations below the critical temperature, the fluid
can spontaneously split into two phases. The addition of an
external field merely increases the inhomogeneity of a two-
phase system.

Figure 7 shows results of subcritical CPP simulations 3
and 3L, which included vapor, liquid, and two-phase regions.
The constant μtot was determined by fitting the μ0 curve to the
LJ EOS at one liquid density (ρ∗ = 0.83) at which the EOS is
expected to be accurate. Figure 7 also shows that μ0 exhibits a
van der Waals loop in the two-phase region. The liquid-vapor
tie line calculated using the LJ EOS is shown for reference in
Fig. 7. The μ0 curves given by simulations 3 and 3L were fit
using a Fourier cosine series.

Normally, two-phase molecular simulations predict co-
existing densities by ignoring the interface and measuring av-
erage bulk-phase densities. In this work we determined the
coexisting densities by equating the homogeneous pressures
and the chemical potentials of the two phases predicted from
simulation (because the external field disrupts bulk regions
of constant density). The vapor–liquid coexisting (binodal)
densities determined from CPP simulations 3 and 3L and the
LJ EOS are shown in Table II. Liquid binodal densities show
satisfactory agreement with the LJ EOS, but vapor binodal
densities are not as satisfactory. Increasing the cutoff radius
or using an inhomogeneous LRC may improve results.

FIG. 7. Homogeneous chemical potential vs density for two-phase CPP sim-
ulations 3 and 3L. The liquid–vapor tie line calculated using the LJ EOS is
shown for reference.
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FIG. 8. (a) Homogeneous chemical potential vs density for vapor-phase CPP
simulation 4, which shows slight nonideal gas behavior. (b) Relative error as
compared to the LJ EOS. Density error bars for the CPP method are not
shown in (a) but are identical to those shown in (b).

The spinodal densities can be estimated by finding the
minimum and maximum of the van der Waals loop in the ho-
mogeneous pressure profile predicted using Eq. (21).70, 71 We
show the resulting spinodal densities from simulations 3 and
3L compared to the LJ EOS in Table II. The CPP method
allows one to obtain information about the metastable or
unstable regions of the system that is difficult or impossible to
determine experimentally. However, a potential problem with
the use of Eq. (21) in the two-phase region is that one can-
not eliminate or significantly decrease the inhomogeneity in
the two-phase region by increasing the length of the simula-
tion cell. If density gradients in this region are too large, the
pressure tensor correction for the inhomogeneity of the sys-
tem could be less reliable. We also note that it is difficult to
validate spinodal densities using the LJ EOS because the EOS
was not fit with data in the metastable or unstable regions. Va-
por binodal and spinodal densities were also somewhat sen-
sitive to the number of Fourier cosine terms used to fit the
profiles.

Figure 7 also shows that for this simulation setup, ran-
dom errors in the CPP method become significant at very low
densities. This problem is easily overcome by performing a
separate CPP simulation exclusively at vapor conditions as
described below.

2. Single-phase systems

If one is interested only in the vapor or liquid regions
(a single phase) of a subcritical fluid, a CPP simulation can
be performed only at these conditions. The effect of an ex-
ternal potential on a single-phase subcritical fluid is similar
to that for the supercritical case. Figure 8 shows the results
of vapor-phase CPP simulation 4. The results show slight de-
parture from ideal gas behavior and also show that the CPP

FIG. 9. (a) Homogeneous chemical potential vs density for liquid-phase CPP
simulation 5. (b) Relative error as compared to the LJ EOS. Density er-
ror bars for the CPP method are not shown in (a) but are identical to those
shown in (b).

method works well at predicting the chemical potential at low
densities. The agreement between CPP and the LJ EOS is bet-
ter than the size error bars would suggest. For this simulation,
there appears to be cancellation of errors when the pressure
tensor correction is used. This may be because errors in the
fits of the density and pressure tensor are correlated in this
instance.

Figure 9 shows the results of liquid-phase CPP simula-
tion 5. At this temperature, the density at the liquid-solid co-
existence point is liquid ρ∗ = 0.881,69 so part of the results
represent a metastable liquid region. These results show the
CPP method also works well to determine chemical poten-
tial differences at liquid densities. There also appears to be
a slight systematic disagreement between the results for this
CPP simulation and the Kolafa and Nezbeda EOS.

V. CONCLUSION

A new method, called chemical potential perturbation
(CPP), has been developed to predict the chemical potential
in periodic molecular simulations. The CPP method applies
a spatially varying external potential to the simulation, caus-
ing the density to depend upon position in the simulation cell.
Following equilibration the homogeneous (uniform or bulk)
chemical potential as a function of density can be determined
relative to some reference state after correcting for the effects
of the inhomogeneity of the system. If desired, the homoge-
neous pressure and Helmholtz free energy can also be pre-
dicted by the new method, as well as binodal and spinodal
densities of a two-phase fluid.

We compare three different methods of approximating
the inhomogeneous correction. The VdW method uses the
van der Waals density gradient theory to approximate the
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inhomogeneous Helmholtz free energy density. The pres-
sure tensor method uses the local pressure tensor to approx-
imate the homogeneous pressure. The TZ method uses the
Triezenberg–Zwanzig definition of surface tension to approx-
imate the inhomogeneous free energy density. The pressure
tensor and TZ methods give satisfactory results, while results
from the VdW method show the correct trend. Increasing the
simulation cell length may decrease the inhomogeneity of the
system, but the use of a correction allows one to obtain satis-
factory results using a much shorter simulation cell or work
with natural two-phase systems. Due to the ease of calcula-
tion, the pressure tensor method is the preferred method for
obtaining homogeneous properties in this work.

The CPP method was tested using a pure-component LJ
fluid at vapor, liquid, two-phase, and supercritical conditions.
Satisfactory agreement was found between the CPP method
and an LJ equation of state. The efficiency of the CPP method
was also compared to that for Widom’s method under the
tested conditions. Both Widom’s method and the CPP method
work well for low densities, and the CPP method also works
well for high densities where Widom’s method starts to fail.

We have used a relatively simple form for the external
potential in this work. More complicated forms could be used
to further decrease the density gradients in the simulation. In
a subsequent paper, we plan to discuss different long-range
corrections to the pressure tensor. It is straightforward to ex-
tend the CPP method to structured molecules and we expect
that the method will still work well, even for high densities.
Particle insertions would only be necessary to determine the
constant μtot if an ideal gas reference state is not contained in
the CPP simulation, and such insertions can be performed at
the lowest density in the simulation. We also plan to extend
the CPP method to multicomponent systems.
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