CAREER FAIR WEEK

- BYU Bridge
- Info Sessions
- AIChE Activities

Strategy to Finish Ch. 4

- Mon (2/6) – 4.6 Chemical Reaction Terminology
- Wed (2/8) – 4.7 Balances on Process with Reactions, including DOF
- Thurs (2/9) – STEM CAREER FAIR
- Fri (2/10) – 4.7 Practice balances w/reactions
- Mon (2/13) – 4.8 Combustion

Word to the Wise

- Balances with chemical reaction are:
 - Easy!
 - Most missed competency on the L3 exam!

Non-Stoichiometric

- $N_2 + 3H_2 \rightarrow 2NH_3$
- Occurs quite a bit!
- Limiting reactant – whichever reactant will be consumed first!
 - If we start with 1 mole N_2, 2 moles H_2, then H_2 is the limiting reactant
 - If the 2 moles of H_2 are consumed, there will still be N_2 left!
- Excess reactant – whichever reactant would be left over after consuming the limiting reactant
 - In the example above, N_2 is the excess reactant

Stoichiometric

(I shouldn’t have to review this)

- $N_2 + 3H_2 \rightarrow 2NH_3$
- Stoichiometric coefficients (v_i)
 - Found in stoichiometric equation (numbers in front of species that balance the equation)
 - Negative for reactants, positive for products
 - $v_{N_2} = -1, v_{H_2} = -3, v_{NH_3} = 2$
- Stoichiometric ratio
 - Molar ratio in stoichiometric equation
 - The stoichiometric ratio here is $N_2/H_2 = 1/3$
 - If we actually have a system that has a 1:3 proportion, then we say it is in stoichiometric proportion

More Terms

(N2 + 3H2 → 2NH3)

- Stoichiometric Requirement
 - Given x number of moles of one reactant, how many moles of the other reactant(s) are needed in stoichiometric proportion?
 - Given 2 moles of N_2, what is the stoichiometric requirement of H_2 to form NH_3? (6 moles)
- Percent Excess Suppose we have 2 moles N_2 and 7 moles H_2
 - There will be 1 mole of H_2 left after complete reaction
 - % excess = $\frac{(n_{i,0} - n_{i, stoich})}{n_{i, stoich}}$ • $(7-6)/6$ in this case = 1/6, or 16.7% excess H_2
Fractional Conversion

- \(f_i \) in our text, \(X_i \) in most others
 - Relative amount of reactant converted
 \[\frac{n_{reacted}}{n_{fed}} \]
 - \(f_i \) (or \(X_i \)) = \(\frac{n_i - n_{i0}}{n_{i0}} = 1 - \frac{n_i}{n_{i0}} \)
- Start with 3 moles \(H_2 \), end with 0.3 moles \(H_2 \), then
 \(f_{H_2} = \frac{3 - 0.3}{3} = 0.9 \), or 90% conversion

Extent of Reaction

- \(\xi \), pronounced ksee
 - Moles reacted, normalized to stoichiometric equation
 \[n_i = n_{i0} + \xi v_i \]
 or
 \[\xi = \frac{n_i - n_{i0}}{v_i} \]
 - Note that \(v_i \) is negative for a reactant, positive for a product
 - \(\xi \) has units of moles
 - One value of \(\xi \) for each reaction (not one per species)

Example

- Start with 3 moles \(H_2 \) and 1.5 moles \(N_2 \)
 - 0.3 moles of \(H_2 \) are left after rxn (measured)
 - \(\xi = \frac{n_i - n_{i0}}{v_i} = \frac{0.9}{2} = 0.45 \) moles
 - \(n_{NH_3} = n_{i0} + \xi v_i = 0 + 0.9 \times 2 = 1.8 \) moles
 - Also, \(n_{N_2} = 1.5 + (0.9) \times (-1) = 0.6 \) moles
 - Note that \(\xi \) does not change with species, but there is one \(\xi \) for each reaction

Practice

- \(C_3H_8 + \frac{7}{2} O_2 \rightarrow 3 CO + 4 H_2O \)
- Start with 2 moles propane, 10 moles \(O_2 \)
- Limiting reactant: propane
- %Excess of excess reactant:
 \[\frac{(10 - 7)}{7} \times 100 = 42.8\% \]

If 1.5 moles of propane react,
 - Fractional conversion \(f_{C_3H_8} = \frac{2 - 0.5}{2} = 75\% \)
 - Extent of reaction \(\xi = \frac{0.5 - 3}{(1)\times(1)} = 1.5 \) moles
 - \(n_{CO} = 10 \times (1.5) \times (-7/2) = 4.75 \) moles
 - \(n_{H_2O} = 0 + 1.5 \times 3 = 4.5 \) moles
 - \(n_{H_2O} = 0 + 1.5 \times 4 = 6.0 \) moles

Multiple Reactions

- Use \(\xi \)'s in mole balance for each species
 - \(C_2H_6 + \frac{5}{2} O_2 \rightarrow 2CO + 3H_2O \)
 - \(CO + \frac{1}{2} O_2 \rightarrow CO_2 \)
 - There must be a different extent of reaction for each reaction!
 - \(\xi_1 \) for reaction 1
 - \(\xi_2 \) for reaction 2
 - In general, for \(j \) reactions (\(i \) is for species)
 \[n_i = n_{i0} + \sum_j v_{ij} \xi_j \]
Multiple Reactions

Use \(\xi \) in mole balance for each species

\[
\begin{align*}
\text{C}_2\text{H}_6 + \frac{5}{2} \text{O}_2 & \rightarrow 2\text{CO} + 3\text{H}_2\text{O} \\
\text{CO} + \frac{1}{2} \text{O}_2 & \rightarrow \text{CO}_2
\end{align*}
\]

Mole balances:

\[
\begin{align*}
\text{n}_{\text{C}_2\text{H}_6} &= n_{\text{C}_2\text{H}_6,0} - \xi_1 \\
\text{n}_{\text{O}_2} &= n_{\text{O}_2,0} - \frac{5}{2} \xi_1 - \frac{5}{2} \xi_2 \\
\text{n}_{\text{CO}} &= n_{\text{CO},0} + 2 \xi_1 - \xi_2 \\
\text{n}_{\text{H}_2\text{O}} &= n_{\text{H}_2\text{O},0} + 3 \xi_1 \\
\text{n}_{\text{CO}_2} &= n_{\text{CO}_2,0} + \xi_2
\end{align*}
\]

Yield & Selectivity

• These both have to do with multiple products, only one of which is most desired

 ★ Yield = (moles of desired product)/ (max possible moles at complete conversion)

 • Selectivity = (moles desired product)/(sum of undesired products)
 – There are lots of ways to define selectivity
 – Often it is where the carbon goes, and we ignore H\(_2\) as a product when calculating selectivity

Practice

\[
\begin{align*}
\text{C}_2\text{H}_6 & \rightarrow \text{C}_2\text{H}_4 + \text{H}_2 \\
\text{C}_2\text{H}_4 + \text{H}_2 & \rightarrow 2\text{CH}_4 \\
\text{C}_2\text{H}_4 + \text{C}_2\text{H}_6 & \rightarrow \text{C}_3\text{H}_6 + \text{CH}_4
\end{align*}
\]

Start with 100 moles of C\(_2\)H\(_6\)

After reaction, we have:

65 mols C\(_2\)H\(_4\)

15 mols C\(_2\)H\(_6\)

60 mols H\(_2\)

25 mols CH\(_4\)

5 mols C\(_3\)H\(_6\)

• Find yield and selectivity if C\(_2\)H\(_4\) is the desired product
• Find \(\xi_1, \xi_2, \) and \(\xi_3 \)

Answers (fill-in)

• Yield\(_{\text{C}_2\text{H}_4} = 65/100 = 65\%\)
• Selectivity = 65/(25 + 5) = 2.2
• Set up each mole balance

\[
\begin{align*}
\text{n}_{\text{C}_2\text{H}_6} &= 15 \text{ moles} = n_{\text{C}_2\text{H}_6,0} - \xi_1 - \xi_3 \\
\text{n}_{\text{C}_2\text{H}_4} &= 65 \text{ moles} = 0 + \xi_1 - \xi_3 \\
\text{n}_{\text{H}_2} &= 60 \text{ mols} = 0 + \xi_2 - \xi_3 \\
\text{n}_{\text{C}_3\text{H}_6} &= 5 \text{ mols} = 0 + \xi_3 \\
\end{align*}
\]

So,…

\[
\begin{align*}
\xi_3 &= 5 \text{ mols} \\
\xi_1 &= 65 + 5 = 70 \text{ mols (from C}_2\text{H}_4 \text{ balance)} \\
\xi_2 &= 70 - 60 = 10 \text{ mols (from H}_2 \text{ balance)}
\end{align*}
\]

Answers

• Yield\(_{\text{C}_2\text{H}_4} = 65/100 = 65\%\)
• Selectivity = 65/(25 + 5) = 2.2
• Set up each mole balance

\[
\begin{align*}
\text{n}_{\text{C}_2\text{H}_6} &= 15 \text{ moles} = n_{\text{C}_2\text{H}_6,0} - \xi_1 - \xi_3 \\
\text{n}_{\text{C}_2\text{H}_4} &= 65 \text{ moles} = 0 + \xi_1 - \xi_3 \\
\text{n}_{\text{H}_2} &= 60 \text{ mols} = 0 + \xi_2 - \xi_3 \\
\text{n}_{\text{C}_3\text{H}_6} &= 5 \text{ mols} = 0 + \xi_3 \\
\end{align*}
\]

So,…

\[
\begin{align*}
\xi_3 &= 5 \text{ mols} \\
\xi_1 &= 65 + 5 = 70 \text{ mols (from C}_2\text{H}_4 \text{ balance)} \\
\xi_2 &= 70 - 60 = 10 \text{ mols (from H}_2 \text{ balance)}
\end{align*}
\]

Example:

\[
\text{CO}_2 + 3 \text{H}_2 \rightarrow \text{CH}_3\text{OH} + \text{H}_2\text{O}
\]

Suppose you had 100 mol of CO\(_2\) and 250 mol of H\(_2\), find limiting reactant and % excess of other reactant

• Limiting reactant = H\(_2\)
• % Excess CO\(_2\) = (100-250/3)/(250/3) = 20\%

Suppose 80 mol of CH\(_3\)OH was formed, find \(\xi \) and \(f_{\text{H}_2} \).

\[
\begin{align*}
\xi &= n_{\text{CH}_3\text{OH}} - 0/1 = 80 \text{ mol (also = n}_{\text{H}_2} \\
n_{\text{CO}_2} &= 100 \text{ mol} - (1)(\xi) = 20 \text{ mol} \\
n_{\text{H}_2} &= 250 \text{ mol} - (3)(\xi) = 10 \text{ mol} \\
f_{\text{H}_2} &= X_{\text{H}_2} = (250 - 10)/250 = 1 - 10/250 = 0.96 \ (i.e., \ 96\%)
\end{align*}
\]
Equilibrium Example
(page 122 in book)

CO + H₂O = CO₂ + H₂,
start with 1 mol CO, 2 mol H₂O

\[\frac{y_{CO}}{y_{H₂O}} = \frac{K_v}{y_{CO}y_{H₂O}} \]

\[\begin{align*}
 n_{CO} &= 1.0 - \xi \\
 n_{H₂O} &= 2.0 - \xi \\
 n_{CO₂} &= \xi \\
 n_{H₂} &= \xi \\
 n_{tot} &= 3.0
\end{align*} \]

Strategy:
- Plug expressions for \(y_i \) into equilibrium expression
- Solve for \(\xi \) (quadratic eqn. or use solver)
- Calculate final moles of each species from \(\xi \)
- Calculate \(f_{CO} \)