ECEn 370

Quiz 8 Solutions

Friday, March 5, 2010.

1. Suppose that you walk to class at a speed which is uniformly distributed from 4 to 5 miles per hour (maybe because of snow, like today?). The distance of a single trip to class is 20 miles. What is the pdf of the duration of the trip?
```
\(X=\) speed
\(Y=g(X)=20 / X\)
\(f_{X}(x)= \begin{cases}1, & \text { if } 4 \leq x \leq 5 \\ 0, & \text { otherwise }\end{cases}\)
\(F_{X}(x)= \begin{cases}0, & \text { if } x \leq 4 \\ x-4, & \text { if } 4<x<5 \\ 1, & \text { if } 5 \leq x\end{cases}\)
\(F_{Y}(y)=P(Y \leq y)=P\left(\frac{20}{X} \leq y\right)=P\left(\frac{20}{y} \leq X\right)=1-F_{X}\left(\frac{20}{y}\right)\)
\(F_{Y}(y)=\left\{\begin{array}{ll}1, & \text { if } \frac{20}{y} \leq 4 \\ 5-\frac{20}{y}, & \text { if } 4<\frac{20}{y}<5 \\ 0, & \text { if } 5 \leq \frac{20}{y}\end{array}= \begin{cases}0, & y \leq 4 \\ 5-\frac{20}{y}, & 4<y<5 \\ 1 & y \geq 5\end{cases}\right.\)
\(f_{Y}(y)= \begin{cases}\frac{20}{y^{2}}, & 4<y<5 \\ 0, & \text { otherwise }\end{cases}\)
```

2. Suppose you are given random variables X and Y which have their values determined by the the joint PMF given by the following points: $(1,0),(0,1),(-1,0),(0,-1)$ each with probability $1 / 4$. Find the following: $\operatorname{cov}(X, Y)$ and correlation coefficient, ρ. Are X and Y independent random variables?
```
\(E[X]=0\)
\(E[Y]=0\)
\(E[X Y]=0\)
\(\operatorname{var}(X)=1\left(\frac{1}{4}\right)+1\left(\frac{1}{4}\right)=\frac{1}{2}\)
\(\operatorname{var}(Y)=1\left(\frac{1}{4}\right)+1\left(\frac{1}{4}\right)=\frac{1}{2}\)
\(\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]=0\)
\(\rho=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}}=0\)
```

X and Y are not independent random variables. For example, if you know that X is 1 , then you know that Y is 0 .
3. Suppose you know that $\operatorname{var}(X)=2, \operatorname{var}(Y)=3, \operatorname{cov}(X, Y)=1$, and $Z=2 X-3 Y+3$. Find $\operatorname{var}(Z)$.

Let $A=2 X$
Let $B=-3 Y$
$Z=A+B+3$
$\operatorname{var}(Z)=\operatorname{var}(A)+\operatorname{var}(B)+2 \operatorname{cov}(A, B)$
$\operatorname{cov}(A, B)=\operatorname{cov}(A,-3 Y)=-3 \operatorname{cov}(A, Y)=-3 \cdot \operatorname{cov}(2 X, Y)=-3 \cdot 2 \operatorname{cov}(X, Y)=-6$
$\operatorname{var}(A)=4 \operatorname{var}(X)=4(2)=8$
$\operatorname{var}(B)=9 \operatorname{var}(Y)=9(3)=27$
$\operatorname{var}(Z)=8+27+2(-6)=23$

