ECEn 370

Quiz 9

Friday, March 12, 2010.

1. At BYU the probability that any random person on campus will accept a date tonight is a uniform random variable, Y, distributed from 0.1 to 0.2 . The probability that he/she will accept is independent of previous and other requests. Suppose you pick a person on campus and you ask them for a date repeatedly until they accept. The number of times that you ask this person is given by the random variable X.
What is $\mathrm{E}[X \mid Y]$?

What is $\mathrm{E}[X]$, i.e. the number of times you expect to ask tonight?
2. Suppose you have X and Y be independent Poisson random variables with mean of 2 and 3 respectively. Let $Z=X+Y$. What is the distribution of Z ?

Note: For a Poisson random variable with parameter λ, the transform is $M_{X}(s)=e^{\lambda\left(e^{s}-1\right)},(s<\lambda)$.
3. Suppose I have the following transform:

$$
M_{X}(s)=\frac{1}{2} e^{2 s}+\frac{1}{6} e^{3 s}+\frac{1}{3} e^{5 s}
$$

What is $\mathrm{E}[X]$?

What is $\mathrm{E}\left[X^{2}\right]$?

What is $p_{X}(3)$?

