ECEn 370

Quiz 9 Solutions

Friday, March 12, 2010.

1. At BYU the probability that any random person on campus will accept a date tonight is a uniform random variable, Y, distributed from 0.1 to 0.2 . The probability that he/she will accept is independent of previous and other requests. Suppose you pick a person on campus and you ask them for a date repeatedly until they accept. The number of times that you ask this person is given by the random variable X.
What is $\mathrm{E}[X \mid Y]$?

$$
\begin{aligned}
& \mathrm{E}[X \mid Y=y]=1 / y \\
& \therefore \mathrm{E}[X \mid Y]=1 / Y
\end{aligned}
$$

What is $\mathrm{E}[X]$, i.e. the number of times you expect to ask tonight?

$$
\mathrm{E}[X]=\mathrm{E}[\mathrm{E}[X \mid Y]]=\int_{0.1}^{0.2} \frac{10}{y} d y=[10 \ln y]_{0.1}^{0.2}=10[\ln (0.2)-\ln (0.1)] \approx 6.93
$$

2. Suppose you have X and Y be independent Poisson random variables with mean of 2 and 3 respectively. Let $Z=X+Y$. What is the distribution of Z ?

Note: For a Poisson random variable with parameter λ, the transform is $M_{X}(s)=e^{\lambda\left(e^{s}-1\right)},(s<\lambda)$.
$M_{X}(s)=e^{\lambda_{X}\left(e^{s}-1\right)}$
$M_{Y}(s)=e^{\lambda_{Y}\left(e^{s}-1\right)}$
$M_{Z}(s)=M_{X}(s) M_{Y}(s)=e^{\left(\lambda_{X}+\lambda_{Y}\right)\left(e^{s}-1\right)}$
Therefore, by "pattern matching" we see that Z has a Poisson distribution with a mean of 5 .
3. Suppose I have the following transform:

$$
M_{X}(s)=\frac{1}{2} e^{2 s}+\frac{1}{6} e^{3 s}+\frac{1}{3} e^{5 s}
$$

What is $\mathrm{E}[X]$?
$\mathrm{E}[X]=\left.\frac{d}{d s} M_{X}(s)\right|_{s=0}=2 \cdot \frac{1}{2} e^{2 s}+3 \cdot \frac{1}{6} e^{3 s}+\left.5 \cdot \frac{1}{3} e^{5 s}\right|_{s=0}=1+\frac{1}{2}+\frac{5}{3}=\frac{6+3+10}{6}=\frac{19}{6}$

What is $\mathrm{E}\left[X^{2}\right]$?
$\mathrm{E}[X]=\left.\frac{d^{2}}{d s^{2}} M_{X}(s)\right|_{s=0}=4 \cdot \frac{1}{2} e^{2 s}+9 \cdot \frac{1}{6} e^{3 s}+\left.25 \cdot \frac{1}{3} e^{5 s}\right|_{s=0}=2+\frac{3}{2}+\frac{25}{3}=\frac{12+9+50}{6}=\frac{71}{6}$

What is $p_{X}(3)$?
This is the coefficient of the $e^{3 s}$ term, so $\frac{1}{6}$.

