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Classification, Froude Number, and Wave Speed 
 
 
 
 
 

13-1C  
Solution We are to define normal depth and how it is established.  
 

Analysis In open channels of constant slope and constant cross-section, the fluid accelerates until the head loss due 
to frictional effects equals the elevation drop. The fluid at this point reaches its terminal velocity, and uniform flow is 
established. The flow remains uniform as long as the slope, cross-section, and the surface roughness of the channel remain 
unchanged. The flow depth in uniform flow is called the normal depth yn, which is an important characteristic parameter 
for open-channel flows. 
 

Discussion The normal depth is a fairly strong function of surface roughness. 
  

 
 
 
13-2C  
Solution We are to discuss how pressure changes along the free surface in open-channel flow.  
 
Analysis The free surface coincides with the hydraulic grade line (HGL), and the pressure is constant along the 
free surface. 
 
Discussion At a free surface of a liquid, the pressure must be equal to the pressure of the gas above it. 

  

 
 
 
13-3C  
Solution We are to determine if the slope of the free surface is equal to the slope of the channel bottom.  
 
Analysis No in general. The slope of the free surface is not necessarily equal to the slope of the bottom surface 
even during steady fully developed flow. 
 
Discussion However, there are situations called uniform flow in which the conditions here are met. 

  

 
 
 
 

13-4C  
Solution We are to discuss some reasons for nonuniform flow in open channels, and the difference between rapidly 
varied flow and gradually varied flow.  
 

Analysis The presence of an obstruction in a channel such as a gate or a change in slope or cross-section causes 
the flow depth to vary, and thus the flow to become varied or nonuniform. The varied flow is called rapidly varied flow 
(RVF) if the flow depth changes markedly over a relatively short distance in the flow direction (such as the flow of water 
past a partially open gate or shortly before a falls), and gradually varied flow (GVF) if the flow depth changes gradually 
over a long distance along the channel. 
 

Discussion The equations of GVF are simplified because of the slow changes in the flow direction. 
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13-5C  
Solution We are to discuss the driving force in open-channel flow and how flow rate is determined.  
 
Analysis Flow in a channel is driven naturally by gravity. Water flow in a river, for example, is driven by the 
elevation difference between the source and the sink. The flow rate in an open channel is established by the dynamic 
balance between gravity and friction. Inertia of the flowing fluid also becomes important in unsteady flow. 
 
Discussion In pipe flow, on the other hand, there may be an additional driving force of pressure due to pumps. 

  

 
 
 
13-6C  
Solution We are to discuss the difference between uniform and nonuniform flow.  
 

Analysis The flow in a channel is said to be uniform if the flow depth (and thus the average velocity) remains 
constant. Otherwise, the flow is said to be nonuniform or varied, indicating that the flow depth varies with distance in the 
flow direction. Uniform flow conditions are commonly encountered in practice in long straight sections of channels with 
constant slope and constant cross-section. 
 

Discussion In uniform open-channel flow, the head loss due to frictional effects equals the elevation drop. 
  

 
 

 
 
 
 

13-7C  
Solution We are to explain how to determine if a flow is tranquil, critical, or rapid.  
 

Analysis Knowing the average flow velocity and flow depth, the Froude number is determined from gyV /Fr  . 

Then the flow is classified as 
 
 Fr < 1 Subcritical or tranquil flow 
 Fr = 1 Critical flow 
 Fr > 1 Supercritical or rapid flow 
 

Discussion The Froude number is the most important parameter in open-channel flow. 
  

 
 
 
13-8C  
Solution We are to discuss whether the flow upstream of a hydraulic jump must be supercritical, and whether the 
flow downstream of a hydraulic jump must be subcritical.  
 

Analysis Upstream of a hydraulic jump, the upstream flow must be supercritical. Downstream of a hydraulic 
jump, the downstream flow must be subcritical. 
 

Discussion Otherwise, the second law of thermodynamics would be violated. Note that a hydraulic jump is analogous 
to a normal shock wave – in that case, the flow upstream must be supersonic and the flow downstream must be subsonic. 
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13-9C  
Solution We are to define critical length, and discuss how it is determined.  
 

Analysis The flow depth yc corresponding to a Froude number of Fr = 1 is the critical depth, and it is determined 

from cgyV   or gVyc /2 . 
 

Discussion Critical depth is a useful parameter, even if the depth does not actually equal yc anywhere in the flow. 
  

 
 
 
13-10C  
Solution We are to define and discuss the usefulness of the Froude number.  
 

Analysis Froude number, defined as gyV /Fr  , is a dimensionless parameter that governs the character of 

flow in open channels. Here, g is the gravitational acceleration, V is the mean fluid velocity at a cross-section, and Lc is a 
characteristic length (Lc = flow depth y for wide rectangular channels).  Fr represents the ratio of inertia forces to viscous 
forces in open-channel flow. The Froude number is also the ratio of the flow speed to wave speed, Fr = V /co. 
 

Discussion The Froude number is the most important parameter in open-channel flow. 
  

 

 
 
 
 

13-11  
Solution A single wave is initiated in a sea by a strong jolt during an earthquake. The speed of the resulting wave is 
to be determined. 

Assumptions The depth of water is constant,  

Analysis Surface wave speed is determined the wave-speed relation to be  

m/s140 )m2000()m/s81.9( 2
0 ghc  

Discussion Note that wave speed depends on the water depth, and the wave speed increases as the water depth 
increases. Also, the waves eventually die out because of the viscous effects.  

  

 
 
 
 

13-12  
Solution The flow of water in a wide channel is considered. The speed of a small disturbance in flow for two 
different flow depths is to be determined for both water and oil. 

Assumptions The distance across the wave is short and thus friction at the bottom surface and air drag at the top are 
negligible, 

Analysis Surface wave speed can be determined directly from the relation ghc 0 . 

 (a) m/s 1.57 )m25.0()m/s81.9( 2
0 ghc  

 (b) m/s2.80 m)(0.8)m/s(9.81 2
0 ghc  

Therefore, a disturbance in the flow will travel at a speed of 0.990 m/s in the first case, and 2.80 m/s in the second case. 

Discussion Note that wave speed depends on the water depth, and the wave speed increases as the water depth 
increases as long as the water remains shallow. Results would not change if the fluid were oil, because the wave speed 
depends only on the fluid depth. 
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13-13  
Solution Water flows uniformly in a wide rectangular channel. For given values of flow depth and velocity, it is to 
be determined whether the flow is subcritical or supercritical. 

Assumptions 1 The flow is uniform. 2 The channel is wide and thus the side wall effects are negligible. 

Analysis The Froude number is   978.0
m))(0.24m/s(9.81

m/s1.5
Fr

2


gy

V
, which is lower than 1. 

Therefore, the flow is subcritical. 
 
Discussion Note that the Froude Number is not function of any temperature-dependent properties, and thus 
temperature. 

  

 
 
 
 
 
13-14  
Solution Rain water flows on a concrete surface. For given values of flow depth and velocity, it is to be determined 
whether the flow is subcritical or supercritical. 

Assumptions 1 The flow is uniform. 2 The thickness of water layer is constant.   

Analysis The Froude number is  93.2
m))(0.02m/s(9.81

m/s1.3
Fr

2


gy

V
, which is greater than 1. 

Therefore, the flow is supercritical. 
 
Discussion This water layer will undergo a hydraulic jump when the ground slope decreases or becomes adverse.   

  

 
 
 

 
 
 
 
13-15E  
Solution Water flows uniformly in a wide rectangular channel. For given flow depth and velocity, it is to be 
determined whether the flow is laminar or turbulent, and whether it is subcritical or supercritical. 

Assumptions The flow is uniform.  

Properties The density and dynamic viscosity of water at 70ºF are  = 62.30 lbm/ft3 and   = 6.55610-4 lbm/fts. 

Analysis (a) The Reynolds number of the flow is  5
4

3

1085.2
slbm/ft 10556.6

)ft5.0)(ft/s6)(lbm/ft 30.62(
Re 


 

Vy
, which is 

greater than the critical value of 500.  Therefore, the flow is turbulent. 

 

 (b) The Froude number is  1.50
ft))(0.5ft/s(32.2

ft/s6
Fr

2


gy

V
, which is greater than 1. 

Therefore, the flow is supercritical. 
 
Discussion The result in (a) is expected since almost all open channel flows are turbulent. Also, hydraulic radius for a 
wide rectangular channel approaches the water depth y as the ratio y/b approaches zero.  
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13-16  
Solution Water flows uniformly in a wide rectangular channel. For given flow depth and velocity, it is to be 
determined whether the flow is laminar or turbulent, and whether it is subcritical or supercritical. 

Assumptions The flow is uniform.  

Properties The density and dynamic viscosity of water at 20ºC are  = 998.0 kg/m3 and   = 1.00210-3 kg/ms. 

Analysis (a) The Reynolds number of the flow is  5
3

3

10390.2
skg/m 10002.1

)m16.0)(m/s5.1)(kg/m 0.998(
Re 





Vy

, which 

is greater than the critical value of 500. Therefore, the flow is turbulent. 

 (b) The Froude number is  1.20
m))(0.16m/s(9.81

m/s1.5
Fr

2


gy

V
, which is greater than 1. 

Therefore, the flow is supercritical. 
 

Discussion The result in (a) is expected since almost all open channel flows are turbulent. Also, hydraulic radius for a 
wide rectangular channel approaches the water depth y as the ratio y/b approaches zero.  

  

 
 
 
 
 
 
13-17  
Solution Water flows uniformly through a half-full circular channel. For a given average velocity, the hydraulic 
radius, the Reynolds number, and the flow regime are to be determined. 

Assumptions The flow is uniform. 

Properties The density and dynamic viscosity of water at 10ºC are  = 999.7 kg/m3 and   = 1.30710-3 kg/ms.  

Analysis From geometric considerations, the hydraulic radius is 

 m0.75
2

m 5.1

2

2/2 R

R

R

p

A
R c

h 


 

The Reynolds number of the flow is 

 6101.43


  s kg/m10307.1

)m75.0)(m/s5.2)( kg/m7.999(
Re

3

3


 hVR

, which is 

greater than the critical value of 500. Therefore, the flow is turbulent.  
 When calculating the Froude number, the hydraulic depth should be 
used rather than the maximum depth or the hydraulic radius. For a non-
rectangular channel, hydraulic depth is defined as the ratio of the flow area to 
top width, 

 m178.1
4

m)5.1(

42

2/

 widthTop

2


 R

R

RA
y c

h  

 
2

2.5m/s
Fr 0 735

(9.81m/s )(1.178m)h

V
.

gy
   , which is lower than 1. Therefore, the flow is subcritical. 

 

Discussion If the maximum flow depth were used instead of the hydraulic depth, the result would still be subcritical 
flow, but this is not always the case. 

  

 

R = 1.5 m 

 = /2 
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13-18  
Solution Water flows uniformly through a half-full circular channel. For a given average velocity, the hydraulic 
radius, the Reynolds number, and the flow regime are to be determined. 

Assumptions The flow is uniform. 

Properties The density and dynamic viscosity of water at 10ºC are  = 999.7 kg/m3 and   = 1.30710-3 kg/ms.  

Analysis From geometric considerations, the hydraulic radius is 

 m0.50
2

m 1

2

2/2 R

R

R

p

A
R c

h 


 

The Reynolds number of the flow is 

 5109.56 



 skg/m 10307.1

)m50.0)(m/s5.2)(kg/m 7.999(
Re

3

3


 hVR

, which is 

greater than the critical value of 500. Therefore, the flow is turbulent.  
 When calculating the Froude number, the hydraulic depth should be 
used rather than the maximum depth or the hydraulic radius. For a non-
rectangular channel, hydraulic depth is defined as the ratio of the flow area to 
top width, 

 m7854.0
4

m)0.1(

42

2/

 widthTop

2


 R

R

RA
y c

h  

 901.0
m))(0.7854m/s(9.81

m/s2.5
Fr

2


gy

V
, which is lower than 1. Therefore, the flow is subcritical. 

 

Discussion If the maximum flow depth were used instead of the hydraulic depth, the result would still be subcritical 
flow, but this is not always the case. 

  

 
 

R = 1 m 

 = /2 
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13-19  
Solution Water flow in a partially full circular channel is considered. For given water depth and average velocity, the 
hydraulic radius, Reynolds number, and the flow regime are to be determined. 

Assumptions 1 The flow is uniform. 

Properties The density and dynamic viscosity of water at 20ºC are  = 998.0 kg/m3 and   = 1.00210-3 kg/ms. 

Analysis From geometric considerations, 

  
3360

2
6060              75.0

1

75.05.1
cos

 






R

aR
 

Then the hydraulic radius becomes 

m0.440





 m) 5.1(
3/2

)3/cos()3/sin(3/

2

cossin







R
p

A
R c

h  

The Reynolds number of the flow is  

 5108.76 



 skg/m 10002.1

)m440.0)(m/s2)(kg/m 0.998(
Re

3

3


 hVR

 

which is greater than the critical value of 500. Therefore, the flow is turbulent.  
 When calculating the Froude number, the hydraulic depth should be used rather than the maximum depth or the 
hydraulic radius. For a non-rectangular channel, hydraulic depth is defined as the ratio of the flow area to top width, 

 222 m 382.1)]3/cos()3/sin(3/[m) 5.1()cossin(  RAc  

 m5319.0
m)sin605.1(2

m382.1

sin2 widthTop

2





R

AA
y cc

h            876.0
m))(0.5319m/s(9.81

m/s2
Fr

2


gy

V
 

which is lower than 1.  Therefore, the flow is subcritical. 
  

 
 
 
 
 
Specific Energy and the Energy Equation 
 
 
 
13-20C  
Solution We are to compare the specific energy in two flows – one subcritical and one supercritical.  
 

Analysis A plot of Es versus y for constant V through a rectangular channel of width b reveals that there are two y 
values corresponding to a fixed value of Es: one for subcritical flow and one for supercritical flow. Therefore, the specific 
energies of water in those two channels can be identical. 
 
Discussion If the flow is varied (not uniform), however, Es is not necessarily identical in the two channels. 

  

 
 
 
13-21C  
Solution We are to define and discuss specific energy.  
 

Analysis The specific energy Es of a fluid flowing in an open channel is the sum of the pressure and dynamic 

heads of a fluid, and is expressed as 
g

V
yEs 2

2

 . 

 

Discussion Specific energy is very useful when analyzing varied flows. 
  

 

a=0.75 m 

R = 1.5 m 

 
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13-22C  
Solution We are to examine a claim that during steady flow in a wide rectangular channel, the energy line of the 
flow is parallel to the channel bottom when the frictional losses are negligible.  
 

Analysis No, the claim is not correct. The energy line is a distance gVyEs 2/2  (total mechanical energy of 

the fluid) above a horizontal reference datum. When there is no head loss, the energy line is horizontal even when the 

channel is not. The elevation and velocity heads ( yz   and gV 2/2 ) may convert to each other during flow in this case, 

but their sum remains constant. 
 

Discussion Keep in mind that in real life, there is no such thing as frictionless flow. However, there are situations in 
which the frictional effects are negligible compared to other effects in the flow. 

  

 
 
 

13-23C  
Solution We are to examine a claim that during steady 1-D flow through a wide rectangular channel, the total 
mechanical energy of the fluid at the free surface is equal to that of the fluid at the channel bottom.  
 

Analysis Yes, the claim is correct. During steady one-dimensional flow, the total mechanical energy of a fluid at 

any point of a cross-section is given by gVyzH 2/2 . 
 

Discussion The physical elevation of the point under consideration does not appear in the above equation for H.  
  

 
 
 

13-24C  
Solution We are to express the total mechanical energy in steady 1-D flow in terms of heads.  
 

Analysis The total mechanical energy of a fluid at any point of a cross-section is expressed as gVyzH 2/2  

where y is the flow depth, z is the elevation of the channel bottom, and V is the average flow velocity.  It is related to the 
specific energy of the fluid by sEzH  . 
 

Discussion Because of irreversible frictional head losses, H must decrease in the flow direction in open-channel flow. 
  

 
 
 
 
 

13-25C  
Solution We are to express the 1-D energy equation for open-channel flow and discuss head loss.  
 
Analysis The one-dimensional energy equation for open channel flow between an upstream section 1 and 

downstream section 2 is written as Lh
g

V
yz

g

V
yz 

22

2
2

22

2
1

11  where y is the flow depth, z is the elevation of the 

channel bottom, and V is the average flow velocity. The head loss hL due to frictional effects can be determined from 

g

V

R

L
fh

h
L 8

2

  where f is the average friction factor and L is the length of channel between sections 1 and 2. 

 
Discussion Head loss is always positive – it can never be negative since this would violate the second law of 
thermodynamics. Thus, the total mechanical energy must decrease downstream in open-channel flow. 
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13-26C  
Solution We are to examine claims about the minimum value of specific energy.  
 

Analysis The point of minimum specific energy is the critical point, and thus the first person is correct. 
 

Discussion The specific energy cannot go below the critical point for a given volume flow rate, as is clear from the plot 
of specific energy as a function of flow depth. 

  

 
 
 

13-27C  
Solution We are to examine a claim about supercritical flow of water in an open channel, namely, that the larger the 
flow depth, the larger the specific energy.  
 

Analysis No, the claim is incorrect. A plot of Es versus y for constant V reveals that the specific energy decreases 
as the flow depth increases during supercritical channel flow. 
 

Discussion This may go against our intuition, since a larger flow depth seems to imply greater energy, but this is not 
necessarily the case (we cannot always trust our intuition). 

  

 
 
13-28C  
Solution We are to examine a claim that specific energy remains constant in steady uniform flow.  
 

Analysis The first person (who claims that specific energy remains constant) is correct since in uniform flow, 

the flow depth and the flow velocity, and thus the specific energy, remain constant since gVyEs 2/2 . The head loss 

is made up by the decline in elevation (the channel is sloped downward in the flow direction). 
 

Discussion In uniform flow, the flow depth and the average velocity do not change downstream, since the elevation 
drop exactly overcomes the frictional losses. 

  

 
 
 

13-29C  
Solution We are to define and discuss friction slope.  
 

Analysis The friction slope is related to head loss hL, and is defined as LhS Lf /  where L is the channel length. 

The friction slope is equal to the bottom slope when the head loss is equal to the elevation drop. That is, 0SS f   

when 21 zzhL  . 
 

Discussion Friction slope is a useful concept when analyzing uniform or varied flow in open channels. 
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13-30   
Solution Water flows in a rectangular channel. The critical depth, the alternate depth, and the minimum specific 
energy are to be determined. 
 

Assumptions The channel is sufficiently wide so that the edge effects are negligible.    

Analysis For convenience, we take the channel width to be b = 1 m. Then the volume flow rate and the critical depth 
for this flow become  

           /sm 2.40m) m)(1m/s)(0.4(6 3 VybVAcV      

           m0.837




















1/3

22

233/1

2

2

m) )(1m/s (9.81

/s)m(2.40

gb
yc

V
     

(b) The flow is supercritical since the actual flow depth is y = 0.4 m, 
and y < yc.  The specific energy for given conditions is 

       m 23.2
)m/s 2(9.81

m/s) (6
m) .40(

22 2

22

12
1

2

2

11 
g

V
y

ygb
yEs

V
            

Then the alternate depth is determined from 21 ss EE   to be  

       
2
2

3

22
2

2

2

22

/sm240.0
m 2.23        

2 y
y

ygb
yEs 

V
            

Solving for y2 gives the alternate depth to be y2 = 2.17 m. Therefore, if the character of flow is changed from supercritical 
to subcritical while holding the specific energy constant, the flow depth will rise from 0.4 m to 2.17 m. 

(c) the minimum specific energy is 

  m1.26 m0.837
2

3

2

3

22

2

min , c
c

c
c

cs y
g

gy
y

g

V
yE  

Discussion Note that minimum specific energy is observed when the flow depth is critical. 
  

0.40 m 

6 m/s 
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13-31  

Solution Water flows in a rectangular channel. The critical depth, the alternate depth, and whether the flow is 
subcritical or supercritical are to be determined. 
 

Assumptions The flow is uniform and thus the specific energy is constant.    

Analysis (a) The critical depth is calculated to be   m 0.742
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(b) The average flow velocity and the Froude number are 
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/sm12 3
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 and 1 2
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V
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   , which is greater than 1. 

Therefore, the flow is supercritical.    
 
(c) Specific energy for this flow is 
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Then the alternate depth is determined from Es1=Es2,  
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The alternate depth is calculated to be y2 = 1.03 m which is the subcritical depth for the same value of specific energy.  
 
Discussion The depths 0.55 m and 1.03 are alternate depths for the given discharge and specific energy. The flow 
conditions determine which one is observed.  

  

 
 

13-32E  
Solution Water flows in a wide rectangular channel. For specified values of flow depth and average velocity, the 
Froude number, critical depth, and whether the flow is subcritical or supercritical are to be determined. 

Assumptions  The flow is uniform and thus the specific energy is constant.    

Analysis (a) The Froude number is    2.98
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ft/s 20
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V
 

(b) The critical depth is calculated to be  
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(c) The flow is supercritical since Fr > 1. 
 
For the case of y = 0.2 ft: 
Replacing 1.4 ft in above calculations by 0.2 ft gives 

 7.88
ft)  )(0.2ft/s (32.2

ft/s 20
Fr

2gy

V
 

 
   

  ft0.792

































1/3

2

223/1

2

2223/1

2

2

ft/s 32.2

ft0.2sft20

gb

byV

gb
yc

V
 

The flow is supercritical in this case also since Fr > 1. 
 
Discussion Note that the value of critical depth depends on flow rate, and it decreases as the flow rate decreases.   
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13-33E  
Solution Water flows in a wide rectangular channel. For specified values of flow depth and average velocity, the 
Froude number, critical depth, and whether the flow is subcritical or supercritical are to be determined. 

Assumptions The flow is uniform and thus the specific energy is constant.    

Analysis (a) The Froude number is    1.49
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(b) The critical depth is calculated to be  
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(c) The flow is supercritical since Fr > 1. 
 
For the case of  y = 0.2 ft: 
Replacing 0.8 ft in above calculations by 0.2 ft gives 
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The flow is supercritical in this case also since Fr > 1. 
 
Discussion Note that the value of critical depth depends on flow rate, and it decreases as the flow rate decreases.   
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13-34  
Solution Water flow in a rectangular channel is considered. The character of flow, the flow velocity, and the 
alternate depth are to be determined. 

Assumptions The specific energy is constant.  

Analysis The average flow velocity is determined from    

           m/s 1.25
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The critical depth for this flow is  
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Therefore, the flow is supercritical since the actual flow depth is y = 0.40 m, and y < yc.  The specific energy for given 
conditions is 
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Then the alternate depth is determined from 21 ss EE   to be  
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Solving for y2 gives the alternate depth to be y2 = 0.223 m. There are three roots of this equation; one for subcritical, one 
for supercritical and third one as a negative root. Therefore, if the character of flow is changed from supercritical to 
subcritical while holding the specific energy constant, the flow depth will drop from 0.40 m to 0.223 m. 

Discussion Two alternate depths show two possible flow conditions for a given specific energy. If the energy is not the 
minimum specific energy, there are two water depths corresponding to subcritical and supercritical states of flow. As an 
example, these two depths may be observed before and after a sluice gate as alternate depths, if the losses are disregarded. 

  

 
 
 
13-35  
Solution Water flows in a rectangular channel. The specific energy and whether the flow is subcritical or 
supercritical are to be determined. 

Assumptions The flow is uniform and thus the specific energy is constant.    

Analysis For convenience, we take the channel width to be b = 1 m. Then the volume flow rate and the critical depth 
for this flow become  
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The flow is supercritical since the actual flow depth is y = 0.4 m, 
and y < yc.  The specific energy for given conditions is 
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Discussion Note that the flow may also exist as subcritical flow at the same value of specific energy, 
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13-36  
Solution Water flows uniformly through a half-full hexagon channel. For a given flow rate, the average velocity and 
whether the flow is subcritical or supercritical are to be determined. 

Assumptions The flow is uniform.  

Analysis (a) The flow area is determined from geometric considerations to be 
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(b) When calculating the Froude number, the hydraulic depth should be used 
rather than the maximum depth or the hydraulic radius. For a non-rectangular 
channel, hydraulic depth is defined as the ratio of the flow area to top width, 
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which is greater than 1. Therefore, the flow is supercritical. 

Discussion The analysis is approximate since the edge effects are significant here compared to a wide rectangular 
channel, and thus the results should be interpreted accordingly. 

  

 
 
13-37  
Solution Water flows uniformly through a half-full hexagon channel. For a given flow rate, the average velocity and 
whether the flow is subcritical or supercritical are to be determined. 

Assumptions The flow is uniform.  

Analysis The flow area is determined from geometric considerations to be 
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When calculating the Froude number, the hydraulic depth should be used rather 
than the maximum depth or the hydraulic radius. For a non-rectangular channel, 
hydraulic depth is defined as the ratio of the flow area to top width, 
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which is greater than 1. Therefore, the flow is supercritical. 

Discussion The analysis is approximate since the edge effects are significant here compared to a wide rectangular 
channel, and thus the results should be interpreted accordingly. 
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13-38  
Solution Water flows uniformly through a half-full circular steel channel. For a given average velocity, the volume 
flow rate, critical slope, and the critical depth are to be determined. 

Assumptions The flow is uniform.  

Analysis The volume flow rate is determined from 
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When calculating the Froude number, the hydraulic depth should be used rather 
than the maximum depth or the hydraulic radius. For a non-rectangular channel, 
hydraulic depth is defined as the ratio of the flow area to top width, 
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which is greater than 1. Therefore, the flow is supercritical. 
 
Discussion Note that if the maximum flow depth were used instead of the hydraulic depth, the result could  be 
different, especially when the Froude number is close to 1. 

  

 
 
 
 
 
13-39  
Solution Critical flow of water in a rectangular channel is considered. For a specified average velocity, the flow rate 
of water is  to be determined. 

Assumptions The flow is uniform and thus the specific energy is 
constant.    

Analysis The Froude number must be unity since the flow is 

critical, and thus 1/Fr  gyV . Therefore,   

           m548.2
m/s9.81

 /s)m(5
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Then the flow rate becomes 

             /sm25.5 3 m)(2.548)m(2m/s)5(VbyVAcV  

Discussion Critical flow is not a stable type of flow and can be observed for short intervals. Occurrence of critical 
depth is important as boundary condition most of the time. For example it can be used as a flow rate computation 
mechanism for a channel ending with a drawdown. 
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Uniform Flow and Best Hydraulic Cross Sections 
 
 
13-40C  
Solution We are to discuss when flow in an open channel is uniform, and how it remains uniform.  
 
Analysis Flow in a channel is called uniform flow if the flow depth (and thus the average flow velocity) remains 
constant. The flow remains uniform as long as the slope, cross-section, and the surface roughness of the channel 
remain unchanged. 
 
Discussion Uniform flow in open-channel flow is somewhat analogous to fully developed pipe flow in internal flow. 

  

 
 
 
13-41C  
Solution We are to determine which cross section is better – one with a small or large hydraulic radius.  
 
Analysis The best hydraulic cross-section for an open channel is the one with the maximum hydraulic radius, or 
equivalently, the one with the minimum wetted perimeter for a specified cross-sectional area. 
 
Discussion Frictional losses occur at the wetted perimeter walls of the channel, so it makes sense to minimize the 
wetted perimeter in order to minimize the frictional losses. 

  

 
 
 

13-42C  
Solution We are to determine which cross section shape is best for an open channel.  
 
Analysis The best hydraulic cross-section for an open channel is a (a) circular one. 
 
Discussion Circular channels are often more difficult to construct, however, so they are often not used in practice. 

  

 
 
 

13-43C  
Solution We are to determine the best hydraulic cross section for a rectangular channel.  
 

Analysis The best hydraulic cross section for a rectangular channel is one whose fluid height is (a) half the channel 
width. 
 

Discussion It turns out that for this case, the wetted perimeter, and thus the frictional losses, are smallest. 
  

 
 
 

13-44C  
Solution We are to determine the best hydraulic cross section for a trapezoidal channel.  
 

Analysis The best hydraulic cross section for a trapezoidal channel of base width b is (a) one for which the length of 
the side edge of the flow section is b. 
 

Discussion It turns out that for this case, the wetted perimeter, and thus the frictional losses, are smallest. 
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13-45C  
Solution We are to examine a claim that head loss can be determined by multiplying bottom slope by channel length.  
 
Analysis Yes, the claim is correct. The head loss in uniform flow is LShL 0  since the head loss must equal 

elevation loss. 
 
Discussion In uniform flow, frictional head losses are exactly balanced by elevation loss, which is directly proportional 
to bottom slope. 

  

 
 
13-46C  
Solution We are to discuss how flow depth changes when the bottom slope is increased.  
 
Analysis The flow depth decreases when the bottom slope is increased. 
 
Discussion You can think of it in simple terms this way: As the slope increases, the liquid flows faster, and faster flow 
requires lower depth. 

  

 
 
 

13-47  
Solution We are to determine how the flow rate changes when the Manning coefficient doubles.  
 

Analysis The flow rate in uniform flow is given as 2/1
0

3/2 SRA
n

a
hcV , and thus the flow rate is inversely 

proportional to the Manning coefficient. Therefore, if the Manning coefficient doubles as a result of some algae growth on 
surfaces while the flow cross section remains constant, the flow rate will (d) decrease by half.  
 

Discussion In an actual case, the cross section may also change due to flow depth changes as well. 
  

 
 
 
13-48  
Solution Water flows uniformly half-full in a circular finished-concrete channel. For a given bottom slope, the flow 
rate is to be determined. 

Assumptions 1 The flow is steady and uniform. 2 Bottom slope is constant. 3 Roughness coefficient is constant along the 
channel. 

Properties Manning coefficient for an open channel of finished concrete is n = 0.012 (Table 13-1).    

Analysis The flow area, wetted perimeter, and hydraulic radius of the channel are 
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Then the flow rate can be determined from Manning’s equation to be 

 sm3.19 3 2/12/32
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Discussion Note that the flow rate in a given channel is a strong function of the bottom slope.    
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13-49  
Solution The flow of water in a trapezoidal finished-concrete channel is considered. For a given flow depth and 
bottom slope, the flow rate is to be determined. 

Assumptions 1 The flow is steady and uniform. 2 Bottom slope is constant. 3 Roughness coefficient is constant along the 
channel.  

Properties Manning coefficient for an open channel of finished concrete is n = 0.012 (Table 13-1).    

Analysis The flow area, wetted perimeter, and hydraulic radius of the channel are  
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Bottom slope of the channel is  

006981.04.0tan0  S  

Then the flow rate can be determined from Manning’s equation to be 
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Discussion Note that the flow rate in a given channel is a strong function of the bottom slope.    
  

 
 

 
13-50E  
Solution Water is to be transported uniformly in a full semi-circular unfinished-concrete channel. For a specified 
flow rate, the elevation difference across the channel is to be determined. 

Assumptions 1 The flow is steady and uniform. 2 Bottom slope is constant. 3 Roughness coefficient is constant along the 
channel.  

Properties Manning coefficient for an open channel of unfinished concrete is n = 0.014 (Table 13-1).    

Analysis The flow area, wetted perimeter, and hydraulic radius of the channel are 
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Substituting the given quantities into Manning’s equation, 
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It gives the slope to be S0 = 0.08448. Therefore, the elevation difference z across a pipe length of L = 1 mile = 5280 ft 
must be 

 ft 446 ft)5280(08448.00 LSz  

Discussion Note that when transporting water through a region of fixed elevation drop, the only way to increase the 
flow rate is to use a channel with a larger cross-section.  
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13-51  
Solution We are to discuss the constants and coefficients in the Manning equation.  
 

Analysis The value of the factor a in SI units is a = 1 m1/3/s. Combining the relations fgC /8 and  6/1
hR

n

a
C   

and solving them for n gives the desired relation to be 6/1

/8
hR

fg

a
n  . In practice, n is usually determined 

experimentally. 
 
Discussion The value of n varies greatly with surface roughness. 

  

 
 
 
 
 
 

13-52  

Solution It is to be shown that for uniform critical flow, the general critical slope relation 
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S   reduces to 
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S   for film flow with b >> yc.  

 

Analysis For critical flow, the flow depth is y = yc. For film flow, the hydraulic radius is Rh = y = yc. Substituting into 

the critical slope relation gives the desired result, 3/12
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Discussion The reduced equation is valid for film flow only – be careful not to apply it to channels of other shapes. 
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13-53  
Solution Water is to be transported uniformly in a trapezoidal asphalt-lined channel. For a specified flow rate, the 
required elevation drop per km channel length is to be determined. 

Assumptions 1 The flow is steady and uniform. 2 Bottom slope is constant. 3 Roughness coefficient is constant along the 
channel.  

Properties Manning coefficient for an asphalt-lined open channel is n = 0.016 (Table 13-1).    

Analysis The flow area, wetted perimeter, and hydraulic radius of the channel are 

 2m19.8m)(2.2
2

m6 m12



cA  

 2 26m 2 (2.2m) (3m) 13.4404mp      

 
219.8 m

1.4732m
13.4404 m

c
h

A
R

p
    

Substituting the given quantities into Manning’s equation, 

 2/1
0

3/2 SRA
n

a
hcV       

  
 

22 3

0 2 / 3 1/3 2 2/3

120m /s 0.016
0.0056097

1 m / (19.8m )(1.4732 m)c h

n
S

aA R s

  
         

&V
 

Therefore, the elevation drop z across a pipe length of L = 1 km must be  

 0 0.0056097(1000m)z S L    5.61  m  

Discussion Note that when transporting water through a region of fixed elevation drop, the only way to increase the 
flow rate is to use a channel with a larger cross-section.    

  

 

6 m

      2.2 m 

     12 m
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13-54  
Solution The flow of water through the trapezoidal asphalt-lined channel in the previous problem is reconsidered. 
The maximum flow rate corresponding to a given maximum channel height is to be determined. 

Assumptions 1 The flow is steady and uniform. 2 Bottom slope is constant. 3 Roughness coefficient is constant along the 
channel.  

Analysis We denote the flow conditions in the previous problem by subscript 1 and the conditions for the maximum 

case in this problem by subscript 2. Using the Manning’s equation 2/1
0

3/2 SRA
n

a
hcV  and noting that the Manning 

coefficient and the channel slope remain constant, the flow rate in case 2 can be expressed in terms of flow rate in case 1 as   

3/2
11

3/2
22

1

2

)/(

)/(

hc

hc

RAna

RAna


V

V



       1

3/2

1

2

1

2
2 VV 
















h

h

c

c

R

R

A

A
 

The trapezoid angle is 733.03/2.2tan      25.363/2.2 . 

From geometric considerations, 

 2
1 m19.8m)(2.2

2

m6 m12



cA   

 m13.44m)(3m)(2.22m)(6 22
1 p  

 m1.473
m 13.44

m 19.8 2

1

1
1 

p

A
R c

h  

and  

 2
2 m.1733m)(3.2

2

m6 m14.73



cA  

 m16.82m)6)/2-(14.73m) (3.22m)(6 22
2 p  

 m1.972
m 16.82

m 33.17 2

2

2
2 

p

A
R c

h  

Substituting,  

 /sm 244 3




















 )/sm 120(

m 1.473

m 972.1

m 19.8

m 17.33 3
3/2

2

2

1

3/2

1

2

1

2
2 VV 

h

h

c

c

R

R

A

A
  

Discussion Note that a 45% increase in flow depth results in a 103% increase in flow rate.      
  

 
 

6 m

      3.2 m 

     6+23.2/tan =14.73 m

6 m

      2.2 m 

     12 m

  
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13-23

13-55  
Solution The flow of water through two identical channels with square flow sections is considered. The percent 
increase in flow rate as a result of combining the two channels while the flow depth remains constant is to be determined. 

Assumptions 1 The flow is steady and uniform. 2 Bottom slope is 
constant. 3 Roughness coefficient is constant along the channel.  

Analysis We denote the flow conditions for two separate 
channels by subscript 1 and the conditions for the combined wide 
channel by subscript 2. Using the Manning’s equation 

2/1
0

3/2 SRA
n

a
hcV  and noting that the Manning coefficient, channel 

slope, and the flow area Ac remain constant, the flow rate in case 2 can 
be expressed in terms of flow rate in case 1 as   

3/2

2

1
3/2

11

22

3/2

1

2
3/2

11

3/2
22

1

2

/

/

)/(

)/(


































p

p

pA

pA

R

R

RAna

RAna

c

c

h

h

hc

hc

V

V



   

where p is the wetted perimeter. Substituting, 

increase) (31%         1.31



























3/23/23/2

2

2

1

2

2

3

m 44

m 46

p

p

V

V



  

Discussion This is a very significant increase, and shows the importance of eliminating unnecessary surfaces in flow 
systems, including pipe flow.       

  

 
 
 
 
 
13-56  
Solution The flow of water in a V-shaped cast iron channel is considered. For a given flow depth and bottom slope, 
the flow rate is to be determined. 

Assumptions 1 The flow is steady and uniform. 2 Bottom slope is constant. 3 Roughness coefficient is constant along the 
channel.  

Properties Manning coefficient for an open channel of cast iron is n = 0.013 (Table 13-1).    

Analysis The flow area, wetted perimeter, and hydraulic radius of the channel are  

 222 m5625.0m)75.0(
2

2



 h

hh
Ac  m 386.420sin/m) 2(0.75sin/2  hp  

 m 0.1283
m 4.386

m 0.5625 2


p

A
R c

h  

The bottom slope of the channel is  

 008727.05.0tan0 S  

Then the flow rate is determined from Manning’s equation to be 

/sm1.03 3 2/12/32
1/3

2/1
0

3/2 )008727.0(m) 1283.0()m5625.0(
013.0

/m 1 s
SRA

n

a
hcV  

Discussion Note that the flow rate in a given channel is a strong function of the bottom slope.    
  

4 m

4 m 

4 m

4 m 

20 
h=0.75 m 

20 
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13-24

13-57E  
Solution The flow of water in a rectangular cast iron channel is considered. For given flow rate and bottom slope, 
the flow depth is to be determined. 

Assumptions 1 The flow is steady and uniform. 2 The bottom slope is constant. 3 The roughness coefficient is constant.  

Properties Manning coefficient for a cast iron open channel is n = 0.013 (Table 13-1).    

Analysis From the geometry, the flow area, wetted perimeter, and hydraulic radius are 

 yybyAc 6ft) 6(   yyp 262ft) (6   
y

y

p

A
R c

h 26

6


  

The channel bottom slope is S0 = 1.5/1000 = 0.0015.  
Substituting the given quantities into Manning’s equation, 

 2/1
0

3/2 SRA
n

a
hcV       2/1

2/31/3
3 )0015.0(

26

6
)6(

013.0

/ft 486.1
/sft70 











y

y
y

s
 

Solution of the above equation gives the flow depth to be h = 2.24 ft.  
 

Discussion Non-linear equations frequently arise in the solution of open channel flow problems. They are best handled 
by equation solvers such as EES. 

  

 
 
 
 
 
13-58  
Solution Water is to be transported uniformly in a clean-earth trapezoidal channel. For a specified flow rate, the 
required elevation drop per km channel length is to be determined. 

Assumptions 1 The flow is steady and uniform. 2 Bottom slope is constant. 3 Roughness coefficient is constant along the 
channel.  

Properties Manning coefficient for the clean-earth lined open channel is n = 0.022 (Table 13-1).    

Analysis The flow area, wetted perimeter, and hydraulic radius of the channel are 

 2m.63m)(1.2
2

m )4.21.8(1.8



cA  

m.1945m)(1.2m)(1.22m)(1.8 22 p  

m0.6931
m 5.194

m 3.6 2


p

A
R c

h  

Substituting the given quantities into Manning’s equation, 

2/1
0

3/2 SRA
n

a
hcV       2/1

0
2/32

1/3
3 m) 6931.0()m6.3(

022.0

/m 1
/sm8 S

s
  

It gives the slope to be S0 = 0.003897. Therefore, the elevation drop z across a pipe length of L = 1 km must be  
m 3.90 m)1000(003897.00 LSz  

Discussion Note that when transporting water through a region of fixed elevation drop, the only way to increase the 
flow rate is to use a channel with a larger cross-section.    

  

 

b = 6 ft

y 

b = 1.8 m

      y =1.2 m 

Slope 1:1 
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13-59  
Solution A water draining system consists of three circular channels, two of which draining into the third one. If all 
channels are to run half-full, the diameter of the third channel is to be determined. 

Assumptions 1 The flow is steady and uniform. 2 Bottom slope is constant. 3 Roughness coefficient is constant along the 
channel. 4 Losses at the junction are negligible. 

Properties The Manning coefficient for asphalt lined open channels is n = 0.016 (Table 13-1).    

Analysis The flow area, wetted perimeter, and hydraulic radius of the two 
pipes upstream are 

 2
22

m 272.1
2

m)(0.9π

2


R
Ac


 m.8272

2

m)(0.92

2

2


R
p  

 m45.0
2

m0.9

2

2/2


R

R

R

P

A
R c

h 


 

Then the flow rate through the 2 pipes becomes, from Manning’s equation, 

/sm 669.4)0025.0(m) 45.0()m272.1(
016.0

/m 1
22 32/12/32

1/3
2/1

0
3/2 

s
SRA

n

a
hcV  

The third channel is half-full, and the flow rate through it remains the same. Noting that the flow area is R2/2 and the 
hydraulic radius is R/2, we have 

2/12/322
1/3

3 )0025.0(m) 2/()m2/(
016.0

/m 1
/sm 669.4 RR

s   

Solving for R gives R = 1.167 m. Therefore, the diameter of the third channel is  D3 = 2.33 m . 

Discussion Note that if the channel diameter were larger, the channel would have been less than half full. 
  

 
 

R = 0.9 m 

 = /2 
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13-60  
Solution Water is flowing through a channel with nonuniform surface properties. The flow rate and the effective 
Manning coefficient are to be determined.  

Assumptions 1 The flow is steady and uniform. 2 
The bottom slope is constant. 3 The Manning 
coefficients do not vary along the channel.  

Analysis The channel involves two parts 
with different roughness, and thus it is appropriate 
to divide the channel into two subsections. The 
flow rate for each subsection can be determined 
from the Manning equation, and the total flow rate 
can be determined by adding them up. 
The flow area, perimeter, and hydraulic radius for each subsection and the entire channel are: 

Subsection 1:   2m 181 cA ,       m 91 p ,      m 00.2
m 9

m 18 2

1

1
1 

p

A
R c

h      

Subsection 2:   2m 202 cA ,       m 122 p ,           m 67.1
m 12

m 20 2

2

2
2 

p

A
R c

h      

Entire channel: 2m 38cA ,        m 21p ,        m 81.1
m 21

m 38 2


p

A
R c

h      

Applying the Manning equation to each subsection, the total flow rate through the channel is determined to be  

  
2 2/3 2 2/3

2 3 1 2 2 3 1 2 1/3 1/2
1 2 1 1 0 1 1 0

1 1

(18m ) (2m) (20m ) (1.67 m)
1m /s (0.002)  

0.014 0.05
/ / / /a a

A R S A R S
n n

 
       

 
V V V& & & 3116 m /s  

Knowing the total flow rate, the effective Manning coefficient for the entire channel can be determined from the Manning 
equation to be  

 0.0217
s/m 116

)002.0(m) 81.1)(m 38)(s/m 1(
3

2/12/321/32/1
0

3/2

eff
V

SRaA
n hc  

Discussion The effective Manning coefficient neff lies between the two n values as expected. The weighted average of 
the Manning coefficient of the channel is nave=(n1p1+ n2p2)/p = 0.035, which is quite different than neff. Therefore, using a 
weighted average Manning coefficient for the entire channel may be tempting, but it would not be accurate.  
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13-27

13-61  
Solution The flow of water in a circular open channel is considered. For given flow depth and flow rate, the 
elevation drop per km length is to be determined. 
 

Assumptions 1 The flow is steady and uniform. 2 Bottom slope is constant. 3 Roughness coefficient is constant along the 
channel.  

Properties The Manning coefficient for the steel channel is given to be n = 0.012.  

Analysis The flow area, wetted perimeter, and hydraulic radius of the channel are  

  
3360

2
6060       5.0

1

15.1
cos

 






R

Ry
 

  120
3

2

3
 

  

 222 m 527.2)]3/2cos()3/2sin(3/[2m) 1()cossin(  RAc  

 m 0.6034m) 1(
3/22

)3/2cos()3/2sin(3/2

2

cossin















R

p

A
R c

h  

Substituting the given quantities into Manning’s equation, 

 2/1
0

3/2 SRA
n

a
hcV       2/1

0
2/32

1/3
3 m) 6034.0()m527.2(

012.0

/m 1
/sm12 S

s
  

It gives the slope to be S0 = 0.00637. Therefore, the elevation drop z across a pipe length of L = 1 km must be  

 m 6.37 m)1000(00637.00 LSz  

Discussion Note that when transporting water through a region of fixed elevation drop, the only way to increase the 
flow rate is to use a channel with a larger cross-section.    

  

 
 

R = 1 m 

 y= 1.5 m 

 

 y - R 
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13-28

13-62  
Solution Water is transported in an asphalt lined open channel at a specified rate. The dimensions of the best cross-
section for various geometric shapes are to be determined. 

Assumptions 1 The flow is steady and uniform. 2 Bottom slope is constant. 3 Roughness coefficient is constant along the 
channel.  

Properties The Manning coefficient for asphalt lined open channels is n = 0.016 
(Table 13-1).    

Analysis (a) Circular channel of Diameter D: Best cross-section occurs when 
the channel is half-full, and thus the flow area is D2/8 and the hydraulic radius is 

D/4. Then from Manning’s equation, 2/1
0

3/2 SRA
n

a
hcV ,  

2/12/322
1/3

3 )0015.0(m) 4/()m8/(
016.0

/m 1
/sm 10 DD

s   

which gives D = 3.42 m.  

 
(b) Rectangular channel of bottom width b: For best cross-section, y = b/2.  
Then Ac = yb = b2/2 and Rh = b/4. From the Manning equation,  

2/12/322
1/3

3 )0015.0(m) 4/()m2/(
016.0

/m 1
/sm 10 bb

s
  

which gives b = 3.12 m, and y = b/2 = 1.56 m.  

 
(c) Trapezoidal channel of bottom width b: For best cross-section,  = 60 and 

2/3by  . Then, 22 375.0)60cos1(35.0)cos( bbbbyAc   ,  

bp 3 ,  b
y

Rh 4

3

2
 . From the Manning equation,  

2/12/322
1/3

3 )0015.0(m) 4/3()m375.0(
016.0

/m 1
/sm 10 bb

s
  

which gives b = 1.90 m, and y = 1.65 m and  = 60.  

Discussion The perimeters for the circular, rectangular, and trapezoidal channels are 5.37 m, 6.24 m, and 5.70 m, 
respectively. Therefore, the circular cross-section has the smallest perimeter. 
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13-63    
 

Solution Uniform flow in an asphalt-lined rectangular channel is considered. By varying the depth-to-width ratio 
from 0.1 to 2 in increments of 0.1 for a fixed value of flow area, it is the to be shown that the best hydraulic cross section 
occurs when y/b = 0.5, and the results are to be plotted. 
 
Analysis The EES Equations window is printed below, along with the tabulated and plotted results. 
 

a=1 
n=0.016 "Manning coefficient" 
s=0.003 "Bottom slope is constant" 
Ac=2 "Flow area remains constant at 2 m2" 
Ratio=y/b 
Ac=b*y 
p=b+2*y 
Rh=Ac/p "Hydraulic radius" 
Vdot=(a/n)*Ac*Rh^(2/3)*SQRT(s) "Volume flow rate" 

 

 

Depth-to-
width 

ratio, y/b 

Channel 
width, 
b, m 

Flow rate, 

V,m3/s 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

4.47 
3.16 
2.58 
2.24 
2.00 
1.83 
1.69 
1.58 
1.49 
1.41 
1.35 
1.29 
1.24 
1.20 
1.15 
1.12 
1.08 
1.05 
1.03 
1.00 

3.546 
4.031 
4.221 
4.295 
4.313 
4.301 
4.273 
4.235 
4.192 
4.147 
4.101 
4.054 
4.008 
3.963 
3.919 
3.876 
3.834 
3.794 
3.755 
3.717 

   

Discussion It is clear from the table and the chart that the depth-to-width ratio of y/b = 0.5 corresponds to the best 
cross-section for an open channel of rectangular cross-section.    

  

 

b

y 
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13-64E  
Solution Water is to be transported in a rectangular channel at a specified rate. The dimensions for the best cross-
section if the channel is made of unfinished and finished concrete are to be determined. 

Assumptions 1 The flow is steady and uniform. 2 Bottom slope is constant. 3 Roughness coefficient is constant along the 
channel.  

Properties The Manning coefficient is n = 0.014 for unfinished concrete (part a) and n = 0.012 for finished conrete 
(part b), respectively (Table 13-1).  In English units, a = 1.486 ft1/3/s. 

Analysis For best cross-section of a rectangular cross-section, y = b/2. Then Ac 
= yb = b2/2 and Rh = b/4. The flow rate is determined from the Manning equation, 

2/1
0

3/2 SRA
n

a
hcV . Plugging in and solving for dimension b we get   

 
  3/8

2 / 3

0

2 4n
b

a S

 
 
 
 

&V
 (This is the answer in variable form) 

(a) Unfinished concrete, n = 0.014: 

  
3/8

3
2 / 3

1/3

ft
2 750 0.014 4

s
16.556 ft

ft
1.486 0.0004

s

b

  
  

     
     

 

Thus, b = 16.6 ft, and y = b/2 = 8.28 ft (to three significant digits). 

 

(b) Finished concrete, n = 0.012: 

  
3/8

3
2 / 3

1/3

ft
2 750 0.012 4

s
15.626 ft

ft
1.486 0.0004

s

b

  
  

     
     

 

Thus, b = 15.6 ft, and y = b/2 = 7.81 ft (to three significant digits). 

 

Discussion Note that channels with rough surfaces require a larger cross-section to transport the same amount of water. 
  

 

b

y = b/2 
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13-65E  
Solution Water is to be transported in a rectangular channel at a specified rate. The dimensions for the best cross-
section if the channel is made of unfinished and finished concrete are to be determined. 

Assumptions 1 The flow is steady and uniform. 2 Bottom slope is constant. 3 Roughness coefficient is constant along the 
channel.  

Properties The Manning coefficient is n = 0.012 and n = 0.014 for finished and unfinished concrete, respectively 
(Table 13-1).    

Analysis For best cross-section of a rectangular cross-section, y = b/2. Then Ac 
= yb = b2/2 and Rh = b/4. The flow rate is determined from the Manning equation, 

2/1
0

3/2 SRA
n

a
hcV ,  

(a) Finished concrete, n = 0.012: 

2/12/322
1/3

3 )0004.0(ft) 4/()ft 2/(
012.0

/ft 486.1
/sft 650 bb

s
  

It gives b = 14.8 ft, and y = b/2 = 7.41 ft 

 

(b) Unfinished concrete, n = 0.014: 

2/12/322
1/3

3 )0004.0(ft) 4/()ft 2/(
014.0

/ft 486.1
/sft 650 bb

s
  

It gives b = 15.7 ft, and y = b/2 = 7.85 ft 

 

Discussion Note that channels with rough surfaces require a larger cross-section to transport the same amount of water. 
  

 
 

b

y = b/2 
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13-66  
Solution The flow of water in a trapezoidal channel made of unfinished-concrete is considered. For given flow rate 
and bottom slope, the flow depth is to be determined. 

Assumptions 1 The flow is steady and uniform. 2 Bottom slope is constant. 3 Roughness coefficient is constant along the 
channel.  

Properties Manning coefficient for an open channel of unfinished concrete is n = 0.014 (Table 13-1).    

Analysis From geometric considerations, the flow area, wetted perimeter, and hydraulic radius are 

hhh
h

Ac )5(
2

2 m5 m5



  

hhp 828.2545sin/2m)(5   





45sin/25

)5(

h

hh

p

A
R c

h  

Substituting the given quantities into Manning’s equation, 

2/1
0

3/2 SRA
n

a
hcV       2/1

2/31/3
3 )1(tan

45sin/25

)5(
)5(

014.0

/m 1
/sm25 












h

hh
hh

s
 

It gives the flow depth to be h = 0.685 m.  

Discussion Non-linear equations frequently arise in the solution of open channel flow problems. They are best handled 
by equation solvers such as EES. 

  

 
 
 
 
13-67  
Solution The flow of water in a weedy excavated trapezoidal channel is considered. For given flow rate and bottom 
slope, the flow depth is to be determined. 

Assumptions 1 The flow is steady and uniform. 2 Bottom slope is constant. 3 Roughness coefficient is constant along the 
channel.  

Properties Manning coefficient for the channel is given to be n = 0.030.    

Analysis From geometric considerations, the flow area, wetted perimeter, and hydraulic radius are 

hhh
h

Ac )5(
2

2 m5 m5



  

hhp 828.2545sin/2m)(5   





45sin/25

)5(

h

hh

p

A
R c

h  

Substituting the given quantities into Manning’s equation, 

2/1
0

3/2 SRA
n

a
hcV       2/1

2/31/3
3 )1(tan

45sin/25

)5(
)5(

030.0

/m 1
/sm25 












h

hh
hh

s
 

It gives the flow depth to be y = 1.07 m.   

Discussion Note that as the Manning coefficient increases because of the increased surface roughness of the channel, 
the flow depth required to maintain the same flow rate also increases.  
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Gradually and Rapidly Varied Flows and Hydraulic Jump  
 
 
 
13-68C  
Solution We are to discuss the differences between GVF and RVF.  
 

Analysis Gradually varied flow (GVF) is characterized by gradual variations in flow depth and velocity (small 
slopes and no abrupt changes) and a free surface that always remains smooth (no discontinuities or zigzags). Rapidly 
varied flow (RVF) involves rapid changes in flow depth and velocity. A change in the bottom slope or cross-section of a 
channel or an obstruction on the path of flow may cause the uniform flow in a channel to become gradually or rapidly 
varied flow. Analytical relations for the profile of the free surface can be obtained in GVF, but this is not the case for 
RVF because of the intense agitation. 
 

Discussion In many situations, the shape of the free surface must be solved numerically, even for GVF. 
  

 
 
 
13-69C  
Solution We are to discuss the difference between uniform and nonuniform (varied) flow.  
 

Analysis Both uniform and varied flows are steady, and thus neither involves any change with time at a specified 
location. In uniform flow, the flow depth y and the flow velocity V remain constant whereas in nonuniform or varied 
flow, the flow depth and velocity vary in the streamwise direction of the flow. In uniform flow, the slope of the energy 
line is equal to the slope of the bottom surface. Therefore, the friction slope equals the bottom slope, Sf = S0.  In varied 
flow, however, these slopes are different. 
 

Discussion Varied flows are further classified into gradually varied flow (GVF) and  rapidly varied flow (RVF). 
  

 
 

 
 

13-70C  
Solution We are to analyze a claim that wall shear is negligible in RVF but important in GVF.  
 

Analysis Yes, we agree with this claim. Rapidly varied flows occur over a short section of the channel with 
relatively small surface area, and thus frictional losses associated with wall shear are negligible compared with losses due 
to intense agitation and turbulence. Losses in GVF, on the other hand, are primarily due to frictional effects along the 
channel, and should be considered. 
 

Discussion There is somewhat of an analogy here with internal flows. In long pipe sections with entrance lengths 
and/or gradually changing pipe diameter, wall shear is important. However, in short sections of piping with rapid change of 
diameter or a blockage or turn, etc (minor loss), friction along the wall is typically negligible compared to other losses. 

  

 
 
 

13-71C  
Solution We are to analyze what happens to flow depth in an upward-sloped rectangular channel during supercritical 
flow.  
 

Analysis The flow depth y (a) increases in the flow direction. 
 
Discussion Since the flow is supercritical, this increase in flow depth may occur via a hydraulic jump. 
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13-72C  
Solution We are to determine if it is possible for subcritical flow to undergo a hydraulic jump.  
 
Analysis No. It is impossible for subcritical flow to undergo a hydraulic jump. Such a process would require the 
head loss hL to become negative, which is impossible. It would correspond to negative entropy generation, which would be 
a violation of the second law of thermodynamics. Therefore, the upstream flow must be supercritical (Fr1 > 1) for a 
hydraulic jump to occur. 
 
Discussion This is analogous to normal shock waves in gases – the only way a shock wave can occur is if the flow 
upstream of the shock wave is supersonic with Ma1 > 1 (analogous to supercritical in open-channel flow with Fr1 > 1). 

  

 
 
13-73C  
Solution We are to define the energy dissipation ratio for a hydraulic jump and discuss why a hydraulic jump is 
sometimes used to dissipate energy.  
 
Analysis Hydraulic jumps are often designed in conjunction with stilling basins and spillways of dams in order to 
waste as much of the mechanical energy as possible to minimize the mechanical energy of the fluid and thus its 
potential to cause damage. In such cases, a measure of performance of a hydraulic jump is the energy dissipation ratio, 
which is the fraction of energy dissipated through a hydraulic jump, defined as 

                              
   2 2

1 1 1 1 1

Dissipation ratio
2 1 Fr 2

L L L

s

h h h

E y V / g y /
  

 
. 

 
Discussion Since the head loss is always positive, the dissipation ratio is also always positive. 

  

 
 
13-74C  
Solution We are to analyze what happens to flow depth in a horizontal rectangular channel during subcritical flow.  
 

Analysis The flow depth y must (c) decrease in the flow direction. 
 

Discussion Since the flow is subcritical, there is no possibility of a hydraulic jump. 
  

 
 
 
13-75C  
Solution We are to analyze what happens to flow depth in a sloped rectangular channel during subcritical flow.  
 

Analysis The flow depth y must (a) increase in the flow direction. 
 

Discussion Since the flow is subcritical, there is no possibility of a hydraulic jump. 
  

 
 
 
13-76C  
Solution We are to analyze what happens to flow depth in a horizontal rectangular channel during supercritical flow.  
 
Analysis The flow depth y (a) increases in the flow direction. 
 
Discussion Since the flow is supercritical, this increase in flow depth may occur via a hydraulic jump. 
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13-77C  
Solution We are to analyze what happens to flow depth in a sloped rectangular channel during subcritical flow.  
 
Analysis The flow depth y (c) decreases in the flow direction. 
 
Discussion Since the flow is subcritical, there is no possibility of a hydraulic jump. 

  

 
 
 
 
 
 
13-78  
Solution Water is flowing in a V-shaped open channel with a specified bottom slope at a specified rate. It is to be 
determined whether the slope of this channel should be classified as mild, critical, or steep. 

Assumptions 1 The flow is steady and uniform. 2 The bottom slope is constant. 3 The roughness of the wetted surface of 
the channel and thus the friction coefficient are constant.    

Properties The Manning coefficient for a cast iron channel is n = 0.013 (Table 13-1). 

Analysis From geometric considerations, the cross-sectional area, perimeter, and hydraulic radius are     

22/)2( yyyAc   yyyp 222 22   
22y22

2 yy

p

A
R c

h       

Substituting the known quantities into the Manning equation, 

2/1
0

3/2 SRA
n

a
hcV     2/1

2/3
2

1/3
3 )002.0(

22

y
)(

013.0

s/m 1
/sm 3 








 y  

Solving for the flow depth y gives y = 1.23 m. The critical depth for this flow is 

m 61.0
m) 23.1)(m/s (9.81

s)/m 3(
22

23

2

2


c

c
gA

y
V

 

This channel at these flow conditions is classified as mild since y > yc, and the flow is subcritical.   

Discussion If the flow depth were smaller than 0.61 m, the channel slope would be said to be steep.  Therefore, the 
bottom slope alone is not sufficient to classify a downhill channel as being mild, critical, or steep.   
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13-79  
Solution Water is flowing in an wide brick open channel uniformly. The range of flow depth for which the channel 
can be classified as “steep” is to be determined. 

Assumptions 1 The flow is steady and uniform. 2 The bottom slope is constant. 3 The roughness of the wetted surface of 
the channel and thus the friction coefficient are constant.    

Properties The Manning coefficient for a brick open channel is n = 0.015 (Table 13-1). 

Analysis The slope of the channel is  006981.04.0tantan0  S . 

The hydraulic radius for a wide channel is equal to the flow depth, Rh = y. Now assume the flow in the channel to be 
critical, The channel flow in this case would be critical slope Sc, and the flow depth would be the critical flow depth, which 
is determined from 

312

2

c
c

ya

ng
S            

3

2

2













c
c

Sa

ng
y  

Substituting, 

m0.03160
)006981.0()/m(1

)015.0)(m/s9.81(
3

231

223

2

2
























sSa

ng
y

c
c  

Therefore, this channel can be classified as steep for uniform flow depths less than yc, i.e., y < 0.03160 m. 
 

Discussion Note that two channels of the same slope can be classified as differently (one mild and the other steep) if 
they have different roughness and thus different values of n. 
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13-80E  
Solution Water is flowing in a rectangular open channel with a specified bottom slope at a specified flow rate. It is to 
be determined whether the slope of this channel should be classified as mild, critical, or steep. The surface profile is also to 
be classified for a specified flow depth of 2 m. 

Assumptions 1 The flow is steady and uniform. 2 The bottom slope is constant. 3 The roughness of the wetted surface of 
the channel and thus the friction coefficient are constant.    

Properties The Manning coefficient of a channel with unfinished concrete surfaces is n = 0.014 (Table 13-1). 

Analysis The cross-sectional area, perimeter, and hydraulic radius are     

 2ft 12ft) (12 yyybAc   ft  2122 ft 122 yyybp       

 
 

212  ft

12 2y  ft
c

h

A y
R

p
 


     

Substituting the known quantities into the Manning equation, 

2/1
0

3/2 SRA
n

a
hcV      2/1

2/31/3
3 )5.0(tan

212

12
)12(

014.0

/ft 486.1
/sft300 











y

y
y

s
 

Solving for the flow depth y gives y = 1.95 ft. The critical depth for this flow is  

ft 10.5
ft) 95.1ft )(12ft/s (32.2

s)/ft 300(
22

23

2

2





c

c
gA

y
V

  

This channel at these flow conditions is classified as steep since y < yc, and the flow is supercritical. Alternately, we could 
solve for Froude number and show that Fr > 1 and reach the same conclusion.   The given flow is uniform, and thus y = yn 
= 1.95 ft. Therefore, the given value of y = 3 ft during development is between yc and yn, and the flow profile is S2 
(Table 13-3).  

Discussion If the flow depth were larger than 5.10 ft, the channel slope would be said to be mild.  Therefore, the 
bottom slope alone is not sufficient to classify a downhill channel as being mild, critical, or steep.   

  

 
 

b = 12 ft

y 



Chapter 13 Open-Channel Flow 

 
PROPRIETARY MATERIAL. © 2014 by McGraw-Hill Education.  This is proprietary material solely for authorized instructor use. 
Not authorized for sale or distribution in any manner.  This document may not be copied, scanned, duplicated, forwarded, distributed, or 
posted on a website, in whole or part. 

13-38

13-81  

Solution Water is flowing in an open channel uniformly. It is to be determined whether the channel slope is mild, 
critical, or steep for this flow. 

Assumptions 1 The flow is steady and uniform. 2 The bottom slope is constant. 3 The roughness of the wetted surface of 
the channel and thus the friction coefficient are constant.    

Properties The Manning coefficient for an open channel with finished concrete surfaces is n = 0.012 (Table 13-1). 

Analysis The cross-sectional area, perimeter, and hydraulic radius are     

 2m 3.6m)  m)(3 (1.2  ybAc  m 4.5)m 2.1(2 m 32  ybp      

 m 6667.0
m 5.4

m 6.3 2


p

A
R c

h      

The flow rate is determined from the Manning equation to be  

/sm 2.10)002.0(m) 6667.0()m 6.3(
012.0

s/m 1 32/12/32
1/3

2/1
0

3/2  SRA
n

a
hcV  

Noting that the flow is uniform, the specified flow rate is the normal depth and 
thus y = yn = 1.2 m. The critical depth for this flow is 

m 1.06
m)(3)m/s(9.81

/s)m(10.2
1/3

22

23
3/1

2

2



























bg
yc

V
 

This channel at these flow conditions is classified as mild since y > yc, and the flow is subcritical.   
 

Discussion If the flow depth were smaller than 1.06 m, the channel slope would be said to be steep.  Therefore, the 
bottom slope alone is not sufficient to classify a downhill channel as being mild, critical, or steep.   
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13-82   
Solution Water at a specified depth and velocity undergoes a hydraulic jump. The depth and Froude number after the 
jump, the head loss and dissipation ratio, and dissipated mechanical power are to be determined. 
 

Assumptions 1 The flow is steady or quasi-steady. 2 The channel is sufficiently wide so that the end effects are 
negligible. 3   The channel is horizontal. 

Properties The density of water is 1000 kg/m3.     

Analysis (a) The Froude number before the hydraulic jump is 

           62.2
m) )(1.2m/s (9.81

m/s 9
Fr

2
1

1
1 

gy

V
     

which is greater than 1. Therefore, the flow is supercritical before the 
jump. The flow depth, velocity, and Froude number after the jump are 

         m 3.89




 





  22

112 62.2811m) 2.1(5.0Fr8115.0 yy  

           m/s 78.2)m/s 9(
m 3.89

m 2.1
1

2

1
2  V

y

y
V      

           0.449
m) )(3.89m/s (9.81

m/s 78.2
Fr

2
2

2
2

gy

V
     

 (b) The head loss is determined from the energy equation to be 

m 1.05



)m/s 2(9.81

m/s) (2.78-m/s) (9
m) (3.89-m) 2.1(

2 2

222
2

2
1

21 g

VV
yyhL  

The specific energy of water before the jump and the dissipation ratio are 

m 33.5
)m/s 2(9.81

m/s) (9
m) 2.1(

2 2

22
1

11 
g

V
yEs  

0.195
m 33.5

m 04.1
 rationDissipatio

1s

L

E

h
 

Therefore, 19.5% of the available head (or mechanical energy) of the liquid is wasted (converted to thermal energy) as a 
result of frictional effects during this hydraulic jump. 

(c) The mass flow rate of water is 

 kg/s400,86m/s) m)(9 m)(8 2.1() kg/m1000( 3
11  Vbym V  

Then the dissipated mechanical power becomes 

kW 881









 Nm/s 000,881

m/s kg1

N 1
m) )(1.04m/s 1 kg/s)(9.8400,86(

2
2

dissipated LghmE   

Discussion The results show that the hydraulic jump is a highly dissipative process, wasting 881 kW of power 
production potential in this case. That is, if the water is routed to a hydraulic turbine instead of being released from the 
sluice gate, up to 881 kW of power could be produced.    
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13-83  
Solution Water flowing in a wide channel at a specified depth and flow rate undergoes a hydraulic jump. The 
mechanical power wasted during this process is to be determined. 

Assumptions 1 The flow is steady or quasi-steady. 2 The channel is sufficiently wide so that the end effects are 
negligible. 3   The channel is horizontal. 

Properties The density of water is 1000 kg/m3.     

Analysis Average velocities before and after the jump are  

m/s14
m)0.5m)((10

/sm 07 3

1 V  

m/s75.1
m)m)(4(10

/sm 07 3

2 V  

The head loss is determined from the energy equation to be 

m 33.6
)m/s 2(9.81

m/s) (1.75-m/s) (14
m) (4-m) 5.0(

2 2

222
2

2
1

21 



g

VV
yyhL  

The mass flow rate of water is  

 kg/s000,70/s)m 70() kg/m1000( 33  V m  

Then the dissipated mechanical power becomes 

MW 4.35









  kNm/s4350

m/s kg1000

 kN1
m) )(6.33m/s 1 kg/s)(9.8000,70(

2
2

dissipated LghmE   

Discussion The results show that the hydraulic jump is a highly dissipative process, wasting 4.35 MW of power 
production potential in this case.  
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13-84  
Solution The flow depth and average velocity of water after a hydraulic jump are measured. The flow depth and 
velocity before the jump as well as the fraction of mechanical energy dissipated are to be determined. 

Assumptions 1 The flow is steady or quasi-steady. 2 The channel is sufficiently wide so that the end effects are 
negligible. 3   The channel is horizontal. 

Analysis The Froude number after the hydraulic jump is 

 5327.0
m) )(1.1m/s (9.81

m/s 75.1
Fr

2
2

2
2 

gy

V
     

It can be shown that the subscripts in the relation  






  2

112 Fr81150 y.y  are interchangeable. Thus, 

m4446.05327.0811m) 0.5(1.1Fr81150 22
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
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
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
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       m/s 329.4)m/s 75.1(
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y
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The Froude number before the jump is        

     073.2
m) )(0.4446m/s (9.81

m/s 329.4
Fr

2
1

1
1 

gy

V
     

which is greater than 1. Therefore, the flow is indeed supercritical before the jump. The head loss is determined from the 
energy equation to be 

m 1437.0
)m/s 2(9.81

m/s) (1.75-m/s) (4.329
m) (1.1-m) 4446.0(

2 2
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The specific energy of water before the jump and the dissipation ratio is 

m 400.1
)m/s 2(9.81

m/s) (4.329
m) 4446.0(

2 2

22
1

11 
g

V
yEs  

0.103
m 400.1

m 1437.0
ration Dissipatio
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L

E

h
 

Discussion Note that as a result of this jump, 10.3% of the available energy is wasted.    
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13-85E  
Solution Water at a specified depth and velocity undergoes a hydraulic jump, and dissipates a known fraction of its 
energy. The flow depth, velocity, and Froude number after the jump and the head loss associated with the jump are to be 
determined. 

Assumptions 1 The flow is steady or quasi-steady. 2 The channel is sufficiently wide so that the end effects are 
negligible. 3   The channel is horizontal. 

Analysis The Froude number before the hydraulic jump is 

 984.4
ft) )(2m/s (32.2

ft/s 40
Fr

2
1

1
1 

gy

V
     

which is greater than 1. Therefore, the flow is indeed 
supercritical before the jump. The flow depth, velocity, and 
Froude number after the jump are  

 ft 13.1




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
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
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112 984.4811ft) 0.5(2Fr81150 y.y  

 ft/s 6.09 )ft/s 40(
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The head loss is determined from the energy equation to be 
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Discussion The results show that the hydraulic jump is a highly dissipative process, wasting 13.2 ft of head in the 
process.    
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13-86    
 

Solution A dam is built downstream of a wide rectangular channel in which water is flowing uniformly. The normal 
and critical flow depths upstream, the flow type, and how far upstream of the dam the reservoir extends are to be 
determined.   

Assumptions 1 The channel is wide. 2 The flow is initially uniform, and becomes gradually varied as the effect of the 
dam is felt. 3 The bottom slope is constant. 4 The roughness of the wetted surface of the channel and thus the friction 
coefficient are constant.    

Properties The Manning coefficient of the channel is given to be n = 0.03.   

Analysis (a) The channel is said to be wide, and thus the hydraulic radius is equal to the flow depth, yRh  . 

Knowing the flow rate per unit width (b = 1 m), the normal depth is determined from the Manning equation to be 

2/1
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The critical depth for this flow is 
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Noting that yn > yc, the uniform flow upstream the channel subcritical. 
 
(b) Knowing the initial condition y(0) = 2.5 m, the flow depth y at any x 
location can be determined by numerical integration of the GVF equation   

                    
2

0
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
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where the Froude number for a wide rectangular channel is 
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and the friction slope is determined from the uniform-flow equation by setting S0 = Sf,   
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Substituting, the GVF equation for a wide rectangular channel becomes 
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which is highly nonlinear, and thus difficult to integrate analytically. The solution of the nonlinear first order differential 
equation subject to the initial condition y(x2) = y2 can be expressed as 
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Where x2 = 0 and y = y(x) is the water depth at the specified location x negative value). For given numerical values and 
taking x1 = - 500 m, this problem can be solved using EES as follows: 
 
Vol=1.5 "m^3/s, volume flow rate per unit width, b = 1 m" 
b=1 "m. width of channel" 
n=0.03 "Manning coefficient" 
S_0=0.0005 "Slope of channel" 
g=9.81 "gravitational acceleration, m/s^2" 
 
y_c=(Vol^2/(g*b^2))^(1/3) "Critical depth" 
y_n=(Vol*n/(b*S_0^0.5))^(3/5) "Normal depth" 
 
x2=0; y2=2.5 "m, initial condition" 
x1=-500 "m, length of channel" 
 
f_xy=(S_0-((Vol/b)^2*n^2/y^(10/3)))/(1-(Vol/b)^2/(g*y^3)) "the GVF equation to be integrated" 
y=y2-integral(f_xy, x, x1, x2) "integral equation, auto step: Press F2 to solve."   
 
Copying and pasting the mini program above into a blank EES screen gives the water depth at a location of x1 = - 500 m to 
be 2.30 m, which is considerably higher than 1.60 m (5% above the normal depth of 1.52 m). Repeating calculations for 
different x1 values and tabulating, we get 
 
 

Distance 
along 

channel x, m 

Flow depth 
y, m 

0 
-500 

-1000 
-1500 
-2000 
-2500 
-3000 
-3500 
-4000 
-4500 
-5000 

2.50 
2.30 
2.12 
1.96 
1.83 
1.72 
1.65 
1.60 
1.57 
1.55 
1.54 

 
 
 
 
 
 
 
 
Therefore, the x value corresponding to a flow depth of y = 1.60 m is -3500 m. Finally, the reservoir extends 3500 m 
upstream.  
 
Discussion This problem solves the GVF equation in the ‘backwards’ direction in order to determine the extent of the 
backwater created by a dam or obstruction. The surface profile is also plotted above using the tabulated values and the plot 
feature of EES. From the dam, looking upstream, the water surface profile is an M1 type. The water depth decreases with 
distance upstream, and the uniform flow depth is steadily approached. 
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13-87  
Solution Water at a specified depth and velocity undergoes a hydraulic jump. The head loss associated with this 
process is to be determined.  

Assumptions 1 The flow is steady or quasi-steady. 2 The channel is sufficiently wide so that the end effects are 
negligible. 3   The channel is horizontal. 

Analysis The Froude number before the hydraulic jump is   840.3
m) )(0.56m/s (9.81

m/s 9
Fr

2
1

1
1 

gy

V
, which is 

greater than 1. Therefore, the flow is indeed supercritical before the jump. The flow depth, velocity, and Froude number 
after the jump are 
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The head loss is determined from the energy equation to be 
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Discussion The results show that the hydraulic jump is a highly dissipative process, wasting 1.75 m of head in the 
process.    

  

 
 

FIGURE 13-51 
Control volume that encloses the 
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13-88  
Solution The increase in flow depth during a hydraulic jump is given. The velocities and Froude numbers before and 
after the jump, and the energy dissipation ratio are to be determined. 

Assumptions 1 The flow is steady or quasi-steady. 2 The channel is sufficiently wide so that the end effects are 
negligible. 3   The channel is horizontal. 

Analysis The Froude number before the jump is determined from 
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The head loss is determined from the energy equation to be 
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The specific energy of water before the jump and the dissipation ratio are 
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Therefore, 37.6% of the available head (or mechanical energy) of water is wasted (converted to thermal energy) as a result 
of frictional effects during this hydraulic jump. 
 
Discussion The results show that the hydraulic jump is a highly dissipative process, wasting over one-third of the 
available head.    
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13-89    
 

Solution Gradually varied flow over a bump in a wide channel is considered. The normal and critical flow depths are 
to be calculated and plotted, and the behavior of the free surface is to be investigated.   
Assumptions 1 The channel is wide, and the flow is gradually varied. 2 The bottom slope is constant. 3 The roughness of 
the wetted surface of the channel and thus the friction coefficient are constant.    
Properties The Manning coefficient of the channel is n = 0.02 (given). 
Analysis (a) The channel is wide, and thus the hydraulic radius is 
equal to the flow depth, yRh  . The flow rate per unit width (b = 1 m) is 

1111 byVAV c V        m/sm 0.75m) m)(1 75.0(/ 3
11  yVbV  

Then the critical depth becomes  
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Noting that y1 > yc, the initial flow is subcritical. 

The elevation of the channel bottom is given as ])100(001.0exp[ 2 xzz bb . Noting that S0 is the negative of the 

bottom slope,  

     
 
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)( 2
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 xx
dx

xzd

dx

dz
xS bb  

which varies along the channel. Note that S0 is negative (adverse flow) for x < 100 m. Then the normal depth is determined 
from the Manning equation to be 
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Normal flow cannot exist for x < 100 m since S0 < 0, and yn   for S0 = 0. Therefore, yn is undefined for x < 100 m, 
infinity for x = 0, and first decreases and then increases for x > 100 m as the slope S0 increases and then decreases. This is 
shown in the figure. 
 

(b) Knowing the initial condition y(0) = 1 m, the flow depth y at any x location can be determined by numerical integration 
of the GVF equation   
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where the Froude number for a wide rectangular channel is 
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and the friction slope is determined from the uniform-flow equation by setting S0 = Sf,   
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Substituting, the GVF equation for a wide rectangular channel becomes 
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which is highly nonlinear, and thus difficult to integrate analytically. The solution of the nonlinear first order differential 
equation subject to the initial condition y(x1) = y1 can be expressed as 
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dxyxfyy
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where y = y(x) is the water depth at the specified location x. For given numerical values, this problem can be solved using 
EES as follows: 
 

Vol=0.75 "m^3/s, volume flow rate per unit width, b = 1 m" 
b=1 "m. width of channel" 
n=0.02 "Manning coefficient" 
S_0=0.15*0.002*(x-100)*exp(-0.001*(x-100)^2) "Slope of channel" 
g=9.81 "gravitational acceleration, m/s^2" 
y_c=(Vol^2/(g*b^2))^(1/3) "Critical depth" 
y_n=(Vol*n/(b*ABS(0.15*0.002*(x2-100)*exp(-0.001*(x2-100)^2))^0.5))^(3/5) "Normal depth" 
x1=0; y1=1 "m, initial condition" 
x2=110 "m, length of channel" 
f_xy=(S_0-((Vol/b)^2*n^2/y^(10/3)))/(1-(Vol/b)^2/(g*y^3)) "the GVF equation to be integrated" 
y=y1+integral(f_xy, x, x1, x2) "integral equation, auto step: Press F2 to solve."   

 

Copying and pasting the mini program above into a blank EES screen gives the normal and actual water depth at a location 
of x2 = 110 m to be yn(x2) = 0.47 m and y(x2) =  0.82 m. Repeating calculations for different x2 values and tabulating and 
plotting, we get 
 
Distance 

along 
channel x, m 

Flow 
depth 
y, m 

Normal 
depth yn, m 

 0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 

 1.00 
1.00 
0.99 
0.99 
0.99 
0.97 
0.95 
0.92 
0.87 
0.83 
0.81 
0.82 
 0.85 
0.89 
0.92 
0.94 
0.94 
0.94 
0.94 
0.94 
0.94 

 - 
- 
- 
- 
- 
- 
- 
- 
- 
- 
 

0.47 
0.42 
0.43 
0.49 
0.60 
0.79 
1.12 
1.68 
2.70 
4.63 

 

 
In this problem, the GVF equation for the case of a frictional flow over a Gaussian bump is solved. Note that the local 
slope must be computed at each integration step since the bathymetry is changing continuously and smoothly, 
 
Discussion From the subcritical state of our initial flow, we note that we are on an H2 profile at the start. As soon as 
the leading edge of the bump is encountered, this turns into an A2 profile. For this portion of the flow, yn is undefined and 
Table 13-3 predicts a decrease in water depth. We note that our knowledge of inviscid flows over bumps (Section 13-9) 
also predicts that subcritical flows will decrease in depth over the leading edge of a bump. The graphical results confirm 
this. On the downstream portion of the bump, yn is real, and we see that we are briefly on an M1 profile, with increasing 
water depth. Finally, once the channel bottom again becomes horizontal,  yn   and we are on an M2 profile with very 
slightly decreasing water depth. Downstream of the bump, the flow depth continues to decrease on an H2 profile. If friction 
had been omitted, the water surface would return to the initial elevation.  
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13-90    
 

Solution Gradually varied flow of water in a wide rectangular channel with a break in channel slope is considered. 
The normal and critical flow depths in the two segments are to be determined, and the water surface profile is to be plotted 
and classified. 

Assumptions 1 The channel is wide, and the flow is gradually varied. 2 The bottom slope is constant in each of the two 
segments. 3 The roughness of the wetted surface of the channel and thus the friction coefficient are constant.    

Properties The Manning coefficient of the channel is given to be n = 0.02.   

Analysis (a) The channel is said to be wide, and thus the hydraulic radius is equal to the flow depth, yRh  . 

Knowing the flow rate per unit width (b = 1 m), the normal depth is determined from the Manning equation to be 
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Steep segment: m 0.81
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The critical depth for this flow is 
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Comparing these three depth values, we see that our open channel flow must be classified as steep for both channel 
segments, since yn < yc. 

(b) Knowing the initial condition y(0) = 1.25 m, the flow depth y at any x location can be determined by numerical 
integration of the GVF equation   
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and the friction slope is determined from the uniform-flow equation by setting S0 = Sf,   
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Substituting, the GVF equation for a wide rectangular channel becomes 
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which is highly nonlinear, and thus difficult to integrate analytically. The solution of the nonlinear first order differential 
equation subject to the initial condition y(x1) = y1 can be expressed as 
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where y = y(x) is the water depth at the specified location x. For given numerical values, this problem can be solved using 
EES as follows: 
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Function Slope(x,S01,S02) 
If (x<= 100) Then Slope:=S01 Else Slope:=S02 
End 
 

Function Yn(x2,y_n1,y_n2) 
If (x2<= 100) Then Yn:=y_n1 Else Yn:=y_n2 
End 
 

Vol=5 "m^3/s, volume flow rate per unit width, b = 1 m" 
b=1 "m. width of channel" 
n=0.02 "Manning coefficient for the channel" 
S01=0.01 "Channel slope for mild segment" 
S02=0.02 "Channel slope for steep segment" 
g=9.81 "gravitational acceleration, m/s^2" 
 

y_c=(Vol^2/(g*b^2))^(1/3) "Critical depth" 
y_n1=(Vol*n/(b*S01^0.5))^(3/5) "Normal depth for channel section 1" 
y_n2=(Vol*n/(b*S02^0.5))^(3/5) "Normal depth for channel section 1" 
y_n=Yn(x2,y_n1,y_n2) 
 

x1=0; y1=1.25 "m, initial condition" 
x2=10 "m, length of channel" 
 

S_0=Slope(x,S01,S02) 
f_xy=(S_0-((Vol/b)^2*n^2/y^(10/3)))/(1-(Vol/b)^2/(g*y^3)) "the GVF equation to be integrated" 
y=y1+integral(f_xy, x, x1, x2) "integral equation, auto step: Press F2 to solve."   
 

Copying and pasting the mini program above into a blank EES screen gives the water depth at a location of 10 m to be 
y(x2) = y(10 m) = 1.16 m. Repeating calculations for different x2 values and tabulating and plotting, we get 
 

Distance 
along 

channel x, m 

Flow 
depth y, 

m 

Normal 
depth yn, m 

 0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 

1.25 
1.16 
1.11 
1.08 
1.06 
1.05 
1.04 
1.03 
1.02 
1.02 
1.02 
0.96 
0.92 
0.90 
0.88 
0.86 
0.85 
0.84 
0.84 
0.83 
0.83 

1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.81 
0.81 
0.81 
0.81 
0.81 
0.81 
0.81 
0.81 
0.81 
0.81 

 
Discussion This problem deals with the GVF equation for the case where there is a break in channel slope. The flow 
behavior depends strongly upon the initial depth. The calculated results agree with our understanding of flow behavior as 
illustrated in Table 13-3. For the initial water depth of 1.25 m, we are on an S2 profile and the flow depth will decrease 
towards the normal depth of the first channel segment. At the change in slope, the normal depth changes, but the critical 
depth does not. The water surface profile will remain on an S2 curve, and the flow depth will continue to decrease as the 
new normal depth is approached.   
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13-91    
 

Solution Gradually varied flow of water in a wide rectangular channel with a break in channel slope is considered. 
The normal and critical flow depths in the two segments are to be determined, and the water surface profile is to be plotted 
and classified.   
Assumptions 1 The channel is wide, and the flow is gradually varied. 2 The bottom slope is constant in each of the two 
segments. 3 The roughness of the wetted surface of the channel and thus the friction coefficient are constant.    
Properties The Manning coefficient of the channel is given to be n = 0.02.   
Analysis (a) The channel is said to be wide, and thus the hydraulic radius is equal to the flow depth, yRh  . 

Knowing the flow rate per unit width (b = 1 m), the normal depth is determined from the Manning equation to be 
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Steep segment: m 0.81
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The critical depth for this flow is 
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Comparing these three depth values, we see that our open channel flow must be classified as steep for both channel 
segments, since yn < yc. 
 
(b) Knowing the initial condition y(0) = 0.75 m, the flow depth y at any x location can be determined by numerical 
integration of the GVF equation   
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and the friction slope is determined from the uniform-flow equation by setting S0 = Sf,   
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Substituting, the GVF equation for a wide rectangular channel becomes 
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which is highly nonlinear, and thus difficult to integrate analytically. The solution of the nonlinear first order differential 
equation subject to the initial condition y(x1) = y1 can be expressed as 

dxyxfyy
x

x
2

1

),(1       where    
)/()/(1

)/()/(
),(

32

3/10222
0

gyb

yanbS
yxf

V

V







  

where y = y(x) is the water depth at the specified location x. For given numerical values, this problem can be solved using 
EES as follows: 

 

Function Slope(x,S01,S02) 
If (x<= 100) Then Slope:=S01 Else Slope:=S02 
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End 
 

Function Yn(x2,y_n1,y_n2) 
If (x2<= 100) Then Yn:=y_n1 Else Yn:=y_n2 
End 
 

Vol=5 "m^3/s, volume flow rate per unit width, b = 1 m" 
b=1 "m. width of channel" 
n=0.02 "Manning coefficient for the channel" 
S01=0.01 "Channel slope for mild segment" 
S02=0.02 "Channel slope for steep segment" 
g=9.81 "gravitational acceleration, m/s^2" 
 

y_c=(Vol^2/(g*b^2))^(1/3) "Critical depth" 
y_n1=(Vol*n/(b*S01^0.5))^(3/5) "Normal depth for channel section 1" 
y_n2=(Vol*n/(b*S02^0.5))^(3/5) "Normal depth for channel section 1" 
y_n=Yn(x2,y_n1,y_n2) 
 

x1=0; y1=0.75 "m, initial condition" 
x2=10 "m, length of channel" 
 

S_0=Slope(x,S01,S02) 
f_xy=(S_0-((Vol/b)^2*n^2/y^(10/3)))/(1-(Vol/b)^2/(g*y^3)) "the GVF equation to be integrated" 
y=y1+integral(f_xy, x, x1, x2) "integral equation, auto step: Press F2 to solve."   
 

Copying and pasting the mini program above into a blank EES screen gives the water depth at a location of 10 m to be 
y(x2) = y(10 m) = 1.16 m. Repeating calculations for different x2 values and tabulating and plotting, we get 
 

Distance 
along 

channel x, m 

Flow depth 
y, m 

Normal 
depth yn, 

m 
 0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 

0.75 
0.78 
0.81 
0.83 
0.86 
0.88 
0.90 
0.91 
0.93 
0.94 
0.95 
0.91 
0.89 
0.87 
0.86 
0.85 
0.84 
0.84 
0.83 
0.83 
0.82 

1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.81 
0.81 
0.81 
0.81 
0.81 
0.81 
0.81 
0.81 
0.81 
0.81 

 
 Discussion This problem deals with the GVF equation for the case where there is a break in channel slope. The flow 
behavior depends strongly upon the initial depth. The calculated results agree with our understanding of flow behavior as 
illustrated in Table 13-3. For the initial water depth of 0.75 m, we begin on an S3 curve. Provided the depth has increased 
to at least 0.81 m (yn on segment 2) by the time the change in slope is encountered, we then will be on an S2 curve. 
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13-92    
 

Solution A hydraulic jump that occurs in a wide rectangular channel is considered. The critical flow depth is to be 
determined, and it is to be verifed that the initial and final flows are supercritical and subcritical, respectively, and the 
location of the jump is to be predicted. 

In this problem, the GVF equation is solved for the case of a hydraulic jump in a horizontal channel. The inlet and 
outlet depths are specified, and we are to predict where the hydraulic jump will occur. 

Assumptions 1 The channel is wide, and the flow is gradually varied upstream and downstream of the jump. 2 The 
hydraulic jump has zero streamwise length, i.e. it is a discontinuity. 3 The roughness of the wetted surface of the channel 
and thus the friction coefficient are constant.    

Properties The Manning coefficient of the channel is given to be n = 0.009.   

Analysis (a) The channel is said to be wide, and thus the hydraulic radius is equal to the flow depth, yRh  . 

Knowing the flow rate per unit width (b = 1 m), the critical depth of this flow is determined to be 

2

2

2

2

)(byggA
y

c
c

VV 
      m 0.040























3/1

2

223/12

)m/s (9.81

s)/m 0025()/(

g

b
yc

V
 

Thus, we see that our initial flow is indeed supercritical and our final flow is subcritical.  
 
(b) Now we try several jump locations, for example, at x = 0.75 m. In each case, we integrate the GVF equation from the 
head gate to the jump location and determine the flow depth y1 before the jump, calculate the inflow Froude number of the 

jump at that point from 
3
1

1
/

Fr
gy

bV
 , use the hydraulic jump equation 
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1
1

2 Fr8115.0
y

y
 to get the downstream 

(subcritical) flow depth y2, and continue integrating the GVF equation from the jump location to the tail gate, and compare 
the calculated flow depth y3 at x = 3 m to the measured value of 0.08 m. As summarized in the table and figure below, the 
jump should be located at x = 1.8 m. For given numerical values, this problem can be solved using EES as follows: 
 

Vol=0.025 "m^3/s, volume flow rate per unit width, b = 1 m" 
b=1 "m. width of channel" 
n=0.009 "Manning coefficient for channel" 
S_0=0 "Slope of channel" 
g=9.81 "gravitational acceleration, m/s^2" 
 

y_c=(Vol^2/(g*b^2))^(1/3) "Critical depth" 
 

x0=0; y0=0.01 "m, initial condition at gate" 
x1=0.75 "m, guessed location of jump" 
x2=3 "m, total length of channel" 
 

"GVF solution before the jump:" 
f_xy1=(S_0-((Vol/b)^2*n^2/y^(10/3)))/(1-(Vol/b)^2/(g*y^3)) 
y=y0+integral(f_xy1, x, x0, x1) "integral equation-auto step."  
 

y1=y 
Fr1=(Vol/b)/SQRT(g*y1^3) 
y2=0.5*y1*(-1+SQRT(1+8*Fr1^2)) 
Fr2=(Vol/b)/SQRT(g*y2^3) 
 

"GVF solution after the jump:" 
f_xy2=(S_0-((Vol/b)^2*n^2/yy^(10/3)))/(1-(Vol/b)^2/(g*yy^3)) 
yy=y2+integral(f_xy2, xx, x1, x2) 
y3=yy "Flow depth at end of channel" 
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Jump 

location 
x1, m 

Flow depth 
before jump 

y1, m 

Froude 
number  

Fr1  

Flow depth 
after jump 

y2, m 

Froude 
number  

Fr2 

Flow depth at 
channel end 

y3, m 
0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 

0.010 
0.011 
0.011 
0.012 
0.013 
0.014 
0.014 
0.015 
0.016 
0.016 
0.017 
0.018 
0.018 
0.019 
0.020 
0.020 

7.98 
7.17 
6.50 
5.93 
5.45 
5.04 
4.68 
4.36 
4.08 
3.83 
3.61 
3.40 
3.22 
3.05 
2.90 
2.75 

 0.108 
0.104 
0.100 
0.096 
0.093 
0.090 
0.088 
0.085 
0.083 
0.081 
0.079 
0.077 
0.075 
0.073 
0.071 
0.070 

0.22 
0.24 
0.25 
0.27 
0.28 
0.29 
0.31 
0.32 
0.34 
0.35 
0.36 
0.38 
0.39 
0.40 
0.42 
0.43 

0.108 
0.103 
0.100 
0.096 
0.093 
0.090 
0.087 
0.085 
0.082 
0.080 
0.078 
0.076 
0.075 
0.073 
0.071 
0.070 

 
Thus, the location of the hydraulic jump is at 1.80 m. 
 
Discussion In all cases, the water depth initially increases on an H3 profile. After the jump, the subcritical flow is 
characterized by (very slightly) decreasing water depth on an H2 profile. As the jump is positioned closer to the sluice gate, 
the stronger subcritical flow leads to greater depth ratios across the jump. Alternatively, raising the tailgate will have the 
effect of pushing the jump closer to the head gate. 
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Solution Gradually varied flow of water in a wide rectangular channel is considered. It is to be shown that the slope 
of the surface is a function of S0, y, yn, and yc alone.    

Assumptions 1 The channel is wide, and the flow is gradually varied. 2 The bottom slope is constant. 3 The roughness of 
the wetted surface of the channel and thus the friction coefficient are constant.    

Analysis The channel is said to be wide, and thus the hydraulic radius is equal to flow depth, yRh  . First we 

consider the numerator S0 – Sf. Here S0 is the actual channel slope and would produce a uniform flow depth of yn. The 
friction slope Sf, on the other hand, is the slope that would produce uniform flow at the actual flow depth y. Noting that Rh 
is equivalent to flow depth for a wide rectangular channel, yhe Manning equation simplifies to  
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The critical depth for flow in a wide rectangular channel is 
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Then the Froude number for a wide rectangular channel becomes 
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Substituting Eqs. (1) and (2) in the GVF equation gives the desired result, 
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Discussion This problem simplifies the GVF equation for the special case of a wide rectangular channel. The 
simplified equation makes explicit the importance of the relationship between y, yn, and yc in terms of determining the 
behavior of the flow. From this modified GVF equation, we now see the explicit relationship between y, yn, and yc. The 
relative magnitudes of these terms determine the signs of the numerator and denominator in Eq. 13-65 and therefore the 
overall sign of dy/dx as discussed in Table 13-3. 
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Solution Gradually varied flow of water in a wide rectangular channel is considered. The classification the flow type 
and the flow depths at specified locations are to be determined. 

Assumptions 1 The channel is wide, and the flow is gradually varied. 2 The bottom slope is constant. 3 The roughness of 
the wetted surface of the channel and thus the friction coefficient are constant.    

Properties The Manning coefficient of the channel is given to be n = 0.008.   

Analysis The channel is said to be wide, and thus the hydraulic radius is equal to the flow depth, yRh  . The 

normal depth is determined from the Manning equation to be 
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The critical depth for this flow is 

2

2

2

2

)(byggA
y

c
c

VV 
      ft 91.1

)ft/s (32.2ft) (20

s)/ft 300(
3/1

22

233/1

2

2
























gb
yc

V
 

The flow depth at x = 0 is 
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Noting that yc < yn < y at x = 0, we see from Table 13-3 that the water surface profile during this GVF is classified as M1. 
 
(a) Knowing the initial condition y(0) = y1 = 2.89 ft, the flow depth y at any x location can be determined by numerical 
integration of the GVF equation   
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and the friction slope is determined from the uniform-flow equation by setting S0 = Sf,   
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Substituting, the GVF equation for a wide rectangular channel becomes 
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which is highly nonlinear, and thus difficult to integrate analytically. The solution of the nonlinear first order differential 
equation subject to the initial condition y(x1) = y1 can be expressed as 
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where y = y(x) is the water depth at the specified location x. For given numerical values, this problem can be solved using 
EES as follows: 
 

Vol=300 "ft^3/s, volume flow rate" 
b=20 "ft. width of channel" 
n=0.02 "Manning coefficient" 
a=1.486 
S_0=0.01 "Slope of channel" 
g=32.2 "gravittational acceleration, ft/s^2" 
Vel1=5.2 "ft/s" 
 
y_c=(Vol^2/(g*b^2))^(1/3) "Critical depth" 
y_n=(Vol*n/(a*b*S_0^0.5))^(3/5) "Normal depth" 
 
x1=0; y1=Vol/(Vel1*b) "ft, initial condition" 
x2=500 "ft, lenght of channel" 
 
f_xy=(S_0-((Vol/b)^2*n^2/a^2/y^(10/3)))/(1-(Vol/b)^2/(g*y^3)) "the GVF equation to be integrated" 
y=y1+integral(f_xy, x, x1, x2) "integral equation, auto step: Press F2 to solve."   

 
Copying and pasting the mini program above into a blank EES screen gives the water depth at a location of 500 ft to be 
 

y(x2) = y(500 ft) = 8.13 ft 
 
(b), (c) Similarly, the flow depths at x = 1000 ft and x = 2000 ft are determined to be 

y(x3) = y(1000 ft) = 13.2 ft 

y(x4) = y(2000 ft) = 23.2 ft 

 
Discussion The above results confirm the quantitative prediction from Table 13-3 that an M1 profile should yield 
increasing water depth in the downstream direction. 
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13-95     
 
 

Solution Gradually varied flow of water in a wide rectangular irrigation channel with a rough flow section is 
considered. The normal and critical flow depths in both smooth and rough segments are to be determined, and the water 
surface profile is to be plotted.   
Assumptions 1 The channel is wide, and the flow is gradually varied. 2 The bottom slope is constant. 3 The roughness of 
the wetted surface of the channel and thus the friction coefficient in each segment are constant.    
Properties The Manning coefficient of the channel is given to be n = 0.02 in the smooth section, and 0.03 in the rough 
section.   

Analysis (a) The channel is said to be wide, and thus the hydraulic radius is equal to the flow depth, yRh  . 

Knowing the flow rate per unit width (b = 1 m), the normal depth is determined from the Manning equation to be 
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The critical depth for this flow is 
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The flow is initially uniform, and thus y(0) = yn2 = 1.0 m at x = 0.  
 

(b) Knowing the initial condition y(0) = 1.0 m, the flow depth y at any x location can be determined by numerical 
integration of the GVF equation   
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where the Froude number for a wide rectangular channel is 

3

//
Fr

gy

b

gy

by

gy

V VV 
  

and the friction slope is determined from the uniform-flow equation by setting S0 = Sf,   
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Substituting, the GVF equation for a wide rectangular channel becomes 
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which is highly nonlinear, and thus difficult to integrate analytically. The solution of the nonlinear first order differential 
equation subject to the initial condition y(x1) = y1 can be expressed as 
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where y = y(x) is the water depth at the specified location x. For given numerical values, this problem can be solved using 
EES as follows: 
 

Function Manning(x,n1,n2) 
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If (x<= 200) Then Manning:=n1 Else Manning:=n2 
End 
 
Function Yn(x2,y_n1,y_n2) 
If (x2<= 200) Then Yn:=y_n1 Else Yn:=y_n2 
End 
 
Vol=5 "m^3/s, volume flow rate per unit width, b = 1 m" 
b=1 "m. width of channel" 
n1=0.03 "Manning coefficient for rough channel segment" 
n2=0.02 "Manning coefficient for smoother channel segment" 
S_0=0.01 "Slope of channel" 
g=9.81 "gravitational acceleration, m/s^2" 
 
y_c=(Vol^2/(g*b^2))^(1/3) "Critical depth" 
y_n1=(Vol*n1/(b*S_0^0.5))^(3/5) "Normal depth for channel section 1" 
y_n2=(Vol*n2/(b*S_0^0.5))^(3/5) "Normal depth for channel section 1" 
y_n=Yn(x2,y_n1,y_n2) 
 
x1=0; y1=y_n2 "m, initial condition - uniform flow depth for smooth section" 
x2=220 "m, length of channel" 
 
n=Manning(x,n1,n2) 
f_xy=(S_0-((Vol/b)^2*n^2/y^(10/3)))/(1-(Vol/b)^2/(g*y^3)) "the GVF equation to be integrated" 
y=y1+integral(f_xy, x, x1, x2) "integral equation, auto step: Press F2 to solve."   

 
Copying and pasting the mini program above into a blank EES screen gives the water depth at a location of 220 m to be 
y(x2) = y(220 m) = 1.11 m. Repeating calculations for different x2 values and tabulating and plotting, we get 
 
 

Distance 
along 

channel x, m 

Flow depth 
y, m 

 0 
20 
40 
60 
80 

100 
120 
140 
160 
180 
200 
220 
240 
260 
280 
300 
320 
340 
360 
380 
400 

1.00 
1.14 
1.24 
1.27 
1.27 
1.28 
1.28 
1.28 
1.28 
1.28 
1.28 
1.11 
1.07 
1.04 
1.02 
1.02 
1.01 
1.01 
1.00 
1.00 
1.00 

 

 
Discussion The graphical result shows that the flow is supercritical over the entire domain. Upon beginning the rough 
section of channel, the normal depth jumps upward and the water surface climbs toward this new value on an S3 curve. 
Upon returning to smoother conditions, the water surface descends on an S2 curve toward the original normal depth. 
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Flow Control and Measurement in Channels 
 
 
 
13-96C  
Solution We are to define and classify sharp-crested weirs.  
 
Analysis A sharp-crested weir is a vertical plate placed in a channel that forces the fluid to flow through an 
opening to measure the flow rate. They are characterized by the shape of the opening. For example, a weir with a 
triangular opening is referred to as a triangular weir. 
 
Discussion Similar to the broad-crested weir, this type of flow measurement is quite obtrusive, but requires no special 
measuring equipment or probes. 

  

 
 
 
13-97C  
Solution We are to discuss how flow rate is measured with a broad-crested weir.  
 
Analysis The operation of broad crested weir is based on blocking the flow in the channel with a rectangular 
block, and establishing critical flow over the block. Then the flow rate is determined by measuring flow depths. 
 
Discussion This technique is quite obtrusive, but requires no special measuring equipment or probes. 

  

 
 
 

13-98C  
Solution We are to define the discharge coefficient for sluice gates, and discuss some typical values.  
 
Analysis For sluice gates, the discharge coefficient Cd is defined as the ratio of the actual velocity through the 
gate to the maximum velocity as determined by the Bernoulli equation for the idealized frictionless flow case. For ideal 
flow,  Cd  = 1. Typical values of Cd for sluice gates with free outflow are in the range of 0.55 to 0.60. 
 
Discussion Actual values of the discharge coefficient must be less than one or else the second law would be violated. 

  

 
 
 
13-99C  
Solution We are to analyze whether the free surface of flow over a bump will increase, decrease, or remain constant.  
 
Analysis In the case of subcritical flow, the flow depth y will decrease during flow over the bump. 
 
Discussion This may be contrary to our intuition at first, but if we think in terms of increasing velocity and decreasing 
pressure over the bump (a Bernoulli type of analysis), it makes sense that the surface will decrease over the bump. 
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13-100C  
Solution We are to analyze what happens in subcritical flow over a bump when the bump height increases.  
 
Analysis When the specific energy reaches its minimum value, the flow is critical, and the flow at this point is 
said to be choked. If the bump height is increased even further, the flow remains critical and thus choked. The flow will 
not become supercritical. 
 
Discussion This is somewhat analogous to compressible flow in a converging nozzle – the flow cannot become 
supersonic at the nozzle exit unless there is a diverging section of the nozzle downstream of the throat. 

  

 
 
 
 
 
 
 
 

13-101C  
Solution We are to draw a flow depth-specific 
energy diagram for several types of flow.  
 
Analysis On the figure, diagram 1-2a is for 
frictionless gate, 1-2b is for sluice gate with free 
outflow, and 1-2b-2c is for sluice gate with drown 
outflow, including the hydraulic jump back to 
subcritical flow.  
 
Discussion A plot of flow depth as a function of 
specific energy, as shown here, is quite useful in the 
analysis of varied open-channel flow because the 
states upstream and downstream of a change must 
jump between the two branches. 
 

  

 
 
 
 
 
 
 

Es1 = Es2a 

Es

y Subcritical 
flow 

Supercritical 
flow 

 

 

1 

2a 

 
2b 

2c  (a) Frictionless 
gate 

(c) Drown 
outflow 
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13-102  
Solution The flow of water in a wide channel with a bump is considered. The flow rate of water without the bump 
and the effect of the bump on the flow rate for the case of a flat surface are to be determined. 

Assumptions 1 The flow is steady and uniform. 2 Bottom slope is 
constant. 3 Roughness coefficient is constant along the channel. 4 The 
channel is sufficiently wide so that the end effects are negligible. 5 
Frictional effects during flow over the bump are negligible.  

Properties Manning coefficient for an open channel of unfinished 
concrete is n = 0.014 (Table 13-1).    

Analysis For a wide channel, the hydraulic radius is equal to the 
flow depth, and thus Rh = 2 m. Then the flow rate before the bump per m 
width (i.e., b = 1 m) can be determined from Manning’s equation to be 
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When a bump is placed, it is said that the flow depth remains the same and there is no rise/drop, and thus bzy  12y . 

But the energy equation is given as 
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2
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since bzy  12y , and thus V1 = V2. But from the continuity equation 1122 VyVy  , this is possible only if the flow 

depth over the bump remains constant, i.e., y1 = y2, which is a contradiction since y2 cannot be equal to both y1 and 

bzy 1  while bz  remains nonzero. Therefore, the second part of the problem can have no solution since it is 

physically impossible. 
 
Discussion Note that sometimes it is better to investigate whether there is really a solution before spending a lot of time 
trying to find a solution.   

  

 

Bump 

y1 = 2 m 

zb = 15 cm

y2 

Slope = 0.0022 
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13-103  
Solution Water flowing in a horizontal open channel 
encounters a bump. It will be determined if the flow over the bump is 
choked. 

Assumptions 1 The flow is steady. 2 Frictional effects are 
negligible so that there is no dissipation of mechanical energy. 3 The 
channel is sufficiently wide so that the end effects are negligible.    

Analysis The upstream Froude number and the critical depth are 
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The flow is subcritical since Fr < 1, and the flow depth decreases over the bump. The upstream, over the bump, and critical 
specific energies are 

 m 52.1
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2
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We have an interesting situation: The calculations show that Es2 < Ec. That is, the specific energy of the fluid decreases 
below the level of energy at the critical point, which is the minimum energy, and this is impossible. Therefore, the flow at 
specified conditions cannot exist. The flow is choked when the specific energy drops to the minimum value of 1.46 m, 
which occurs at a bump-height of m06.046.11.521max,  csb EEz .  
 

Discussion A bump-height over 6 cm results in a reduction in the flow rate of water, or a rise of upstream water level. 
Therefore, a 22-cm high bump alters the upstream flow. On the other hand, a bump less than 6 cm high will not affect the 
upstream flow. 

  

Depression over the bump 

Bump 

V 1 =1.2 m/s 

y1=0.80 m 

z = 0.15 m

y2 

Bump 

V1 =2.5 m/s 

y1=1.2 m 

zb =0.22 m

y2 
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13-104  
Solution Water flowing in a horizontal open channel encounters 
a bump. The change in the surface level over the bump and the type of 
flow (sub- or supercritical) over the bump are to be determined. 

Assumptions 1 The flow is steady. 2 Frictional effects are negligible 
so that there is no dissipation of mechanical energy. 3 The channel is 
sufficiently wide so that the end effects are negligible.    

Analysis The upstream Froude number and the critical depth are  
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The upstream flow is supercritical since Fr > 1, and the flow depth increases over the bump. The upstream, over the bump, 
and critical specific energies are 
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The flow depth over the bump is determined from 
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Using an equation solver, the physically meaningful root of this equation is determined to be 0.846 m. Therefore, there is a 
rise of  

m 0.346 30.080.0846.0over bump Rise 12 bzyy  

over the surface relative to the upstream water surface. The specific energy decreases over the bump from, 4.06 to 3.76 m, 
but it is still over the minimum value of 2.42 m. Therefore, the flow over the bump is still supercritical. 

Discussion The actual value of surface rise may be different than 4.6 cm because of frictional effects that are neglected 
in this simplified analysis. 

  

 
 

Rise over the bump 
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13-105  

Solution Water is released from a reservoir through a sluice gate into an open channel. For specified flow depths, the 
rate of discharge is to be determined. 

Assumptions 1 The flow is steady or quasi-steady. 2 The channel is 
sufficiently wide so that the end effects are negligible.    

Analysis The depth ratio y1/a and the contraction coefficient y2/a are 

 12
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The corresponding discharge coefficient is determined from Fig. 13-44 to 
be Cd = 0.59. Then the discharge rate becomes 

/sm  54.3 3 m) 12)(m/s (9.812m) m)(1 6(59.02 2
1gybaCdV  

Discussion Discharge coefficient is the same as free flow because of small depth ratio after the gate. So, the flow rate 
would not change if it were not drowned. 

  

 
 
 
 
 
13-106E  
Solution The flow rate in an open channel is to be measured using a sharp-crested rectangular weir. For specified 
upper limits of flow rate and flow depth, the appropriate height of the weir is to be determined. 

Assumptions 1 The flow is steady. 2 The upstream velocity head is negligible. 3 The channel is sufficiently wide so that 
the end effects are negligible.    

Analysis The weir head is ww PPyH  31 .  The discharge coefficient of the weir is 

 
w

w

w
wd P

P

P

H
C




3
0897.0598.00897.0598.0rec,  

The water flow rate through the channel can be expressed as  
2/3

rec,rec 2
3

2
HgbCwdV  

Substituting the known quantities, 

2/323 )3()ft/s 2(32.2ft) 7(
3

23
0897.0598.0/sft 180 w

w

w P
P

P








 
  

Solution of the above equation yields the weir height as  Pw = 0.415 ft 
 

Discussion Nonlinear equations of this kind can be solved easily using equation solvers like EES.   
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13-107  
Solution The flow rate in an open channel is to be measured using a sharp-crested rectangular weir. For a measured 
value of flow depth upstream, the flow rate is to be determined. 

Assumptions 1 The flow is steady. 2 The upstream velocity head is 
negligible. 3 The channel is sufficiently wide so that the end effects are 
negligible.    

Analysis The weir head is 
 m 1.23.14.31  wPyH      

The discharge coefficient of the weir is 

 7429.0
m 3.1

m 1.2
0897.0598.00897.0598.0rec, 

w
wd P

H
C  

The condition H/Pw < 2 is satisfied since 2.1/1.3 = 1.62. Then the water flow rate through the channel becomes  

/sm 66.8 3 2/322/3
rec,rec )m 1.2()m/s 81.9(2m) 10(

3

2
)7429.0(2

3

2
HgbCwdV  

Discussion The upstream velocity and the upstream velocity head are m/s 96.1
m) m)(3.4 (10

/sm 8.66 3

1
1 

by
V

V
 and     

m 197.0
)m/s 2(9.81

m/s) 96.1(

2 2

22
1 
g

V
 respectively. This is 9.4% of the weir head, which is significant. When the upstream 

velocity head is considered, the flow rate becomes 77.8 m3/s, which is about 16 percent higher than the value determined 
above. Therefore, it is good practice to consider the upstream velocity head unless the weir height Pw is very large relative 
to the weir head H.  

  

 
 
13-108  
Solution The flow rate in an open channel is to be measured using a sharp-crested rectangular weir. For a measured 
value of flow depth upstream, the flow rate is to be determined. 

Assumptions 1 The flow is steady. 2 The upstream velocity head is 
negligible. 3 The channel is sufficiently wide so that the end effects are 
negligible.    

Analysis The weir head is m 8.16.14.31  wPyH . The 

discharge coefficient of the weir is 

 6989.0
m 6.1

m 8.1
0897.0598.00897.0598.0rec, 

w
wd P

H
C  

The condition H/Pw < 2 is satisfied since 1.8/1.6 = 1.125. Then the water 
flow rate through the channel becomes  

/sm 49.8 3 2/322/3
rec,rec )m 8.1()m/s 81.9(2m) 10(

3

2
)6989.0(2

3

2
HgbCwdV  

Discussion The upstream velocity and the upstream velocity head are m/s 47.1
m) m)(3.4 (10

/sm 8.49 3

1
1 

by
V

V
 and     

m 110.0
)m/s 2(9.81

m/s) 47.1(

2 2

22
1 
g

V
, respectively. This is 6.1% of the weir head, which may be significant. When the upstream 

velocity head is considered, the flow rate becomes 55.0 m3/s, which is about 10 percent higher than the value determined 
above. Therefore, it is good practice to consider the upstream velocity head unless the weir height Pw is very large relative 
to the weir head H.  
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13-109  
Solution Water flowing over a sharp-crested rectangular weir is discharged into a channel where uniform flow 
conditions are established. The maximum slope of the downstream channel to avoid hydraulic jump is to be determined. 

Assumptions 1 The flow is steady. 2 The upstream velocity head is negligible. 
3 The channel is sufficiently wide so that the end effects are negligible.    

Properties Manning coefficient for an open channel of unfinished 
concrete is n = 0.014 (Table 13-1).    

Analysis The weir head is m 1.0m2.0m3.01  wPyH . The 

condition H/Pw < 2 is satisfied since 1.0/2.0 = 0.5. The discharge coefficient 
of the weir is 

 6429.0
m 0.2

m 0.1
0897.0598.00897.0598.0rec, 

w
wd P

H
C  

Then the water flow rate through the channel per meter width (i.e., taking b = 1 m) becomes  

       3 23 2 2 3
rec rec

2 2
2 0 6429 1 m 2 9.81 m/s 1 0 m 1 898 m /s

3 3

//
wd ,C b gH . . .  V&  

To avoid hydraulic jump, we must avoid supercritical flow in the channel. Therefore, the bottom slope should not be higher 
than the critical slope, in which case the flow depth becomes the critical depth, 

m 7162.0
)m 1)(m/s (9.81

/s)m 898.1(
3/1

22

233/1

2

2




















gb
yc

V
 

Noting that the hydraulic radius of a wide channel is equal to the flow depth, the bottom slope is determined from the 
Manning equation to be  

2/1
0

3/2 SRA
n

a
hcV       2/1

0
2/32

1/3
3 m) 7162.0()m17162.0(

014.0

/m 1
/sm898.1 S

s
  

Solution gives the slope to be S0 = 0.00215. Therefore,  S0, max = 0.00215. 
 

Discussion For a bottom slope smaller than calculated value, downstream channel would have a mild slope, that will 
force the flow to remain subcritical. 
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13-110E  
Solution Water is released from a reservoir through a sluice gate with free outflow. For specified flow depths, the 
flow rate per unit width and the downstream Froude number are to be determined. 

Assumptions 1 The flow is steady or quasi-steady. 2 The channel is 
sufficiently wide so that the end effects are negligible.    

Analysis For free outflow, we only need the depth ratio y1/a to 
determine the discharge coefficient (for drowned outflow, we also need 
to know y2/a and thus the flow depth y2 downstream the gate) 

 4.55
ft 1.1

ft 51 
a

y
      

The corresponding discharge coefficient is determined from Fig. 13-41 to 
be Cd = 0.55. Then the discharge rate becomes 

 /sft  10.9 3 ft) 5)(ft/s (32.22ft) ft)(1.1 1(55.02 2
1gybaCdV  

The specific energy of a fluid remains constant during horizontal flow when the frictional effects are negligible, 

21 ss EE  . With these approximations, the flow depth past the gate and the Froude number are determined to be  

 ft 074.5
ft)] ft)(5 (1)[ft/s 2(32.2

)ft/s (10.9
ft 5

)(22 22

22

2
1

2

1

2
1

11 
byg

y
g

V
yEs

V
 

 12
2

2

2

2
2

22
)(22 ss E

byg
y

g

V
yE 

V
    ft 074.5

)]ft)( (1)[ft/s 2(32.2

)ft/s (10.9
2

2
2

22

2 
y

y   

Solution yields y2 = 0.643 ft as the physically meaningful root (positive and less than 5 ft). Then,   

 ft/s 9.16
ft) ft)(0.643 (1

/sft 9.10 3

2
2 

byA
V

c

VV 
      and      3.71

ft) )(0.643ft/s (32.2

ft/s 9.16
Fr

2
2

2
2

gy

V
 

 

Discussion In actual gates some frictional losses are unavoidable, and thus the actual velocity and Froude number 
downstream will be lower.  
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13-111E  
Solution Water is released from a reservoir through a drowned sluice gate into an open channel. For specified flow 
depths, the rate of discharge is to be determined. 

Assumptions 1 The flow is steady or quasi-steady. 2 The channel is 
sufficiently wide so that the end effects are negligible.    

Analysis The depth ratio y1/a and the contraction coefficient y2/a are 

 4.55
ft 1.1

ft 51 
a

y
     and  3

ft 1.1

ft 3.32 
a

y
 

The corresponding discharge coefficient is determined from Fig. 13-41 to 
be Cd = 0.44. Then the discharge rate becomes 

 /sft  8.69 3 ft) 5)(ft/s (32.22ft) ft)(1.1 1(44.02 2
1gybaCdV  

Then the Froude number downstream the gate becomes 

 ft/s 63.2
ft) ft)(3.3 (1

/sft 69.8 3

2
2 

byA
V

c

VV 
           0.255

ft) )(3.3ft/s (32.2

ft/s 63.2
Fr

2
2

2
2

gy

V
 

Discussion Note that the flow past the gate becomes subcritical when the outflow is drowned.  
  

 
 
 
 
 
13-112  
Solution Water is released from a lake through a drowned sluice gate into an open channel. For specified flow 
depths, the rate of discharge through the gate is to be determined. 

Assumptions 1 The flow is steady or quasi-steady. 2 The channel is 
sufficiently wide so that the end effects are negligible.    

Analysis The depth ratio y1/a and the contraction coefficient y2/a 
are 

 13.3
m 0.6

m 81 
a

y
    and      7.6

m 0.6

m 42 
a

y
 

The corresponding discharge coefficient is determined from Fig. 13-41 to 
be Cd = 0.47. Then the discharge rate becomes 

 /sm  17.7 3 m) 8)(m/s (9.812m) m)(0.6 5(47.02 2
1gybaCdV  

 

Discussion Note that the use of the discharge coefficient enables us to determine the flow rate through sluice gates by 
measuring 3 flow depths only. 
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13-113E  
Solution Water discharged through a sluice gate undergoes a hydraulic jump. The flow depth and velocities before 
and after the jump and the fraction of mechanical energy dissipated are to be determined. 

Assumptions 1 The flow is steady. 2 The channel is 
sufficiently wide so that the end effects are negligible. 3 
Frictional effects associated with sluice gate are 
negligible.  4 The channel is horizontal. 

Analysis For free outflow, we only need the depth 
ratio y1/a to determine the discharge coefficient, 

 8
ft 1

ft 81 
a

y
      

The corresponding discharge coefficient is determined 
from Fig. 13-41 to be Cd = 0.58. Then the discharge rate 
becomes 

 /sft  13.16 3 ft) 8)(ft/s (32.22ft) ft)(1 1(58.02 2
1gybaCdV  

The specific energy of a fluid remains constant during horizontal flow when the frictional effects are negligible, 

21 ss EE  . With these approximations, the flow depth past the gate and the Froude number are determined to be  

 ft 042.8
ft)] ft)(8 (1)[ft/s 2(32.2

)/sft (13.16
ft 8

)(22 22

23

2
1

2

1

2
1

11 
byg

y
g

V
yEs

V
 

 12
2

2

2

2
2

22
)(22 ss E

byg
y

g

V
yE 

V
    ft 042.8

)]ft)( (1)[ft/s 2(32.2

)/sft (13.16
2

2
2

23

2 
y

y   

It gives y2 = 0.601 ft as the physically meaningful root (positive and less than 8 ft). Then,   

 ft/s 21.9
ft) ft)(0.601 (1

/sft 16.13 3

2
2 byA

V
c

VV 
 

 97.4
ft) )(0.601ft/s (32.2

ft/s 9.21
Fr

2
2

2
2 

gy

V
 

Then the flow depth and velocity after the jump (state 3) become  

 ft 3.94




 





  22

223 97.4811ft) 601.0(5.0Fr8115.0 yy  

 ft/s 3.34 )ft/s 9.21(
ft 3.94

ft 601.0
2

3

2
3 V

y

y
V      

The head loss and the fraction of mechanical energy dissipated during the jump are 

 ft 93.3
)ft/s 2(32.2

ft/s) (3.34-ft/s) (21.9
ft) (3.94-ft) 601.0(

2 2

222
3

2
2

32 



g

VV
yyhL  

 0.488






)2/4.97ft)(1 601.0(

ft 93.3

)2/Fr1(
 rationDissipatio

22
222 y

h

E

h L

s

L  

 

Discussion Note that almost half of the mechanical energy of the fluid is dissipated during hydraulic jump.    
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13-114  
Solution The flow rate of water in an open channel is to be measured with a sharp-crested triangular weir. For a 
given flow depth upstream the weir, the flow rate is to be determined. 

Assumptions 1 The flow is steady or quasi-steady. 2 The channel is 
sufficiently wide so that the end effects are negligible.    

Properties The weir discharge coefficient is given to be 0.60. 

Analysis The discharge rate of water is determined directly from 

2/5
tri, 2

2
tan

15

8
HgCwd 









V      

where Cwd = 0.60,  = 60, and H = 1 m. Substituting, 

   /sm  1.19 3





 

 5/22 m) 1()m/s (9.812
2

80
tan

15

8
)60.0(V  

Discussion Note that the use of the discharge coefficient enables us to determine the flow rate in a channel by 
measuring a single flow depth. Triangular weirs are best-suited to measure low discharge rates as they are more accurate 
than the other weirs for small heads. 

  

 
 
 
 
 
13-115  
Solution The flow rate of water in an open channel is to be measured with a sharp-crested triangular weir. For a 
given flow depth upstream the weir, the flow rate is to be determined. 

Assumptions 1 The flow is steady or quasi-steady. 2 The channel is 
sufficiently wide so that the end effects are negligible.    

Properties The weir discharge coefficient is given to be 0.60. 

Analysis The discharge rate of water is determined directly from 

2/5
tri, 2

2
tan

15

8
HgCwd 









V      

where Cwd = 0.60,  = 80, and H = 0.9 m. Substituting, 

   /sm 0.914 3





 

 5/22 m) 9.0()m/s (9.812
2

80
tan

15

8
)60.0(V  

Discussion Note that the use of the discharge coefficient enables us to determine the flow rate in a channel by 
measuring a single flow depth. Triangular weirs are best-suited to measure low discharge rates as they are more accurate 
than the other weirs for small heads. 
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13-116  
Solution The notch angle of a sharp-crested triangular weir used to measure the discharge rate of water from a lake is 
reduced by half. The percent reduction in the discharge rate is to be determined. 

Assumptions 1 The flow is steady or quasi-steady. 2 The channel is 
sufficiently wide so that the end effects are negligible. 3 The water depth in the 
lake and the weir discharge coefficient remain unchanged.   

Analysis The discharge rate through a triangular weir is given as 

 2/5
tri, 2

2
tan

15

8
HgCwd 









V      

Therefore, the discharge rate is proportional to the tangent of the half notch angle, and the ratio of discharge rates is 
calculated to be  

391.0
)2/100tan(

)2/50tan(

100

50 








V

V
V 


  

When the notch angle is reduced by half, the discharge rate drops to 39.1% of the original level. Therefore, the percent 
reduction in the discharge rate is  

 Percent reduction = 1-0.391 =0.609= 60.9% 

Discussion Note that triangular weirs with small notch angles can be used to measure small discharge rates while weirs 
with large notch angles can be used to measure for large discharge rates. 

  

 
 
 

13-117  
Solution The flow rate in an open channel is to be measured using a broad-crested rectangular weir. For a measured 
value of flow depth upstream, the flow rate is to be determined. 

Assumptions 1 The flow is steady. 2 The upstream velocity head is 
negligible. 3 The channel is sufficiently wide so that the end effects are 
negligible.    

Analysis The weir head is m 0.18.08.11  wPyH . The 

discharge coefficient of the weir is 

       4333.0
m) m)/(0.8 0.1(1

65.0

/1

65.0
broad, 







w
wd

PH
C  

Then the water flow rate through the channel becomes  

/sm 3.69 3





 /sm 694.3)m 0.1(m/s 9.81m)(2/3) 5)(4333.0(

3

2 32/323/22/3
2/3

broad,rec HgbCwdV  

The minimum flow depth above the weir is the critical depth, which is determined from 

m 0.382






















3/1

22

233/1

2

2

min
m) 5)(m/s (9.81

/s)m 694.3(

gb
yy c

V
 

 

Discussion The upstream velocity and the upstream velocity head are 

 m/s 4104.0
m) m)(1.8 (5

/sm 694.3 3

1
1 

by
V

V
        and          m 00859.0

)m/s 2(9.81

m/s) 4104.0(

2 2

22
1 
g

V
 

This is 0.9% of the weir head, which is negligible. When the upstream velocity head is considered (by replacing H in the 

flow rate relation by gVH 2/2
1 ), the flow rate becomes 3.74 m3/s, which is practically identical to the value determined 

above.    
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13-118  
Solution The flow rate in an open channel is to be measured using a broad-crested rectangular weir. For a measured 
value of flow depth upstream, the flow rate is to be determined. 

Assumptions 1 The flow is steady. 2 The upstream velocity head is negligible. 3 The channel is sufficiently wide so that 
the end effects are negligible.     

Analysis The weir head is m 4.00.14.11  wPyH . The discharge coefficient of the weir is 

 

 5494.0
m) m)/(1.0 4.0(1

65.0

/1

65.0
broad, 







w
wd

PH
C  

Then the water flow rate through the channel becomes  

 

/sm 1.18 3











/sm 1.185

)m 4.0(m/s 9.81m)(2/3) 5)(5494.0(

3

2

3

2/323/2

2/3
2/3

broad,rec HgbCwdV

 

The minimum flow depth above the weir is the critical depth, which is determined from 

m 0.179






















3/1

22

233/1

2

2

min
m) 5)(m/s (9.81

/s)m 185.1(

gb
yy c

V
 

Discussion The upstream velocity and the upstream velocity head are 

 m/s 169.0
m) m)(1.4 (5

/sm 185.1 3

1
1 

by
V

V
       and        m 00146.0

)m/s 2(9.81

m/s) 169.0(

2 2

22
1 
g

V
 

This is 0.4% of the weir head, which is negligible. When the upstream velocity head is considered (by replacing H in the 

flow rate relation by gVH 2/2
1 , the flow rate becomes 1.19 m3/s, which is practically identical to the value determined 

above.    
  

 

Broad-crested weir

Pw = 1 m 

y1 = 1.4 m 

Discharge 
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13-119  
Solution Uniform subcritical water flow of water in a wide channel with a bump is considered. For critical flow over 
the bump, the flow rate of water and the flow depth over the bump are to be determined. 

Assumptions 1 The flow is steady and uniform. 2 Bottom slope is constant. 3 Roughness coefficient is constant along the 
channel. 4 The channel is sufficiently wide so that the end effects are negligible. 5 Frictional effects during flow over the 
bump are negligible.  

Properties Manning coefficient for an open channel of unfinished 
concrete is n = 0.014 (Table 13-1).    

Analysis Let subscript 1 denote the upstream conditions 
(uniform flow) in the channel, and 2 denote the critical conditions over 
the bump. For a wide channel, the hydraulic radius is equal to the flow 
depth, and thus Rh = y1. Then the flow rate per m width (i.e., b = 1 m) 
can be determined from Manning’s equation, 

 /sm 350.3)0022.0()(
014.0

/m 1 33/5
1

2/12/3
11

1/3
2/1

0
3/2 yyy

s
SRA

n

a
hc V  

The critical depth corresponding to this flow rate is (note that b = 1 m), 

 9/10
1

3/1

2

3/10
1

3/123/5
1

3/1

2

2

2 046.1
m/s 81.9

224.11)350.3(
y

y

g

y

gb
yy c 
































V
 

The average flow velocity is m/s 350.3/350.3/ 3/2
11

3/5
11 yyyAV c V . Also, 

 3/4
112

23/2
1

1

2
1

11 5720.0
)m/s 2(9.81

)350.3(

2
yy

y
y

g

V
yEs   

 9/10
1

9/10
12 569.1)046.1(

2

3

2

3
yyyEE ccs   

Substituting these two relations into bss zEE  12  where 15.0 bz  m gives 

 15.05720.0569.1 3/4
11

9/10
1  yyy  

Using an equation solver such as EES or an iterative approach, the flow depth upstream is determined to be 

 y1 = 2.947 m 

Then the flow rate and the flow depth over the bump becomes 

 /sm 20.3 3 5/33/5
1 7)3.350(2.94350.3 yV  

 m 3.48 9/109/10
12 )947.2(046.1046.1 yyy c  

Discussion Note that when critical flow is established and the flow is “choked”, the flow rate calculations become very 

easy, and it required minimal measurements. Also, m/s 89.6)947.2(350.3 3/2
1 V  and 

28.1m) /s)(2.947m (9.81/)m/s 89.6(/Fr 2
111  gyV , and thus the upstream flow is supercritical. 

  

 
 

Bump 

y1 

zb = 15 cm

y2 

Slope = 0.0022 

Critical flow
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13-120  
Solution The flow rate in an open channel is measured using a broad-crested rectangular weir. For a measured value 
of minimum flow depth over the weir, the flow rate and the upstream flow depth are to be determined. 

Assumptions 1 The flow is steady. 2 The upstream velocity head is negligible. 3 The channel is sufficiently wide so that 
the end effects are negligible.    

Analysis The flow depth over the reaches its minimum value when the flow becomes critical. Therefore, the 
measured minimum depth is the critical depth yc. Then the flow rate is determined from the critical depth relation to be 

      

3/1

2

2

min 









gb
yy c

V
   /sm  1.11 3 22323 m) 1)(m/s (9.81m) (0.50gbycV  

This is the flow rate per m width of the channel since we have taken b = 1 m. Disregarding the upstream velocity head and 

noting that the discharge coefficient of the weir is wwd PHC /1/65.0broad,  , the flow rate for a broad-crested weir can 

be expressed as 

2/3
2/3

rec 3

2

/P1

65.0
Hgb

H w










V

 

 

Substituting, 

/sm 4.91 3


 2/323/23 m/s 9.81m)(2/3) 1(

m) H/(0.81

m 65.0
/sm 11.1 H

 

Its solution is H = 1.40 m. Then the flow depth upstream the weir becomes 

           m 2.20 80.040.11 wPHy      

Discussion The upstream velocity and the upstream velocity head are 

m/s 503.0
m) m)(2.2 (1

/sm 11.1 3

1
1 

by
V

V
   and     m 013.0

)m/s 2(9.81

m/s) 503.0(

2 2

22
1 
g

V
 

This is 0.9% of the weir head, which is negligible. When the upstream velocity head is considered (by replacing H in the 

flow rate relation by gVH 2/2
1 , the flow rate becomes 1.12 m3/s, which is practically identical to the value determined 

above.    
  

 

Broad-crested weir

Pw = 0.80 m 

y1 

Discharge 

yc = 0.50 m 
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13-121 
Solution A sluice gate is used to control the flow rate of water in 
a channel. For specified flow depths upstream and downstream from 
the gate, the flow rate of water and the downstream Froude number are 
to be determined.  

Assumptions 1 The flow is steady. 2 The channel is sufficiently wide 
so that the end effects are negligible. 3 Frictional effects associated 
with sluice gate are negligible.  4 The channel is horizontal. 

Analysis When frictional effects are negligible and the flow 
section is horizontal, the specific energy remains constant, 21 ss EE  .  

Then,  

 
g

V
y

g

V
y

22

2
2

2

2
1

1         
22

2

22

2

m)] m)(0.25 8)[(m/s 2(9.81
m 25.0

m)] m)(0.9 8)[(m/s 2(9.81
m 9.0

VV 
  

Solving for the flow rate gives /sm 7.44 3 /sm 435.7 3V . The downstream velocity and Froude number are 

 m/s 718.3
m) m)(0.25 (8

/sm 435.7 3

2
2 

byA
V

c

VV 
      and       2.37

m) )(0.25m/s (9.81

m/s 718.3
Fr

2
2

2
2

gy

V
 

 

Discussion The actual values will be somewhat different because of frictional effects. 
  

 
 

y1 = 0.9 m 

Sluice 
gate 

y2 = 0.25 m 
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13-77

 
Review Problems 
 
 
 
13-122  
Solution Water flows in a canal at a specified average velocity. For various flow depths, it is to be determined 
whether the flow is subcritical or supercritical. 
 

Assumptions The flow is uniform.    

Analysis For each depth, we determine the Froude number and compare it to the critical value of 1:   

(a) y = 0.2 m:   186.2
m) (0.2)m/s (9.81

m/s 4
Fr

2


gy

V
 

which is greater than 1. Therefore, the flow is supercritical.    

(b) y = 2 m:   1903.0
m) (2)m/s (9.81

m/s 4
Fr

2


gy

V
 

which is less than 1. Therefore, the flow is subcritical.    

(c) y = 1.63 m:   1
m) (1.63)m/s (9.81

m/s 4
Fr

2


gy

V
 

which is equal to 1. Therefore, the flow is critical.    
 
Discussion Note that a flow is more likely to exist as supercritical when the flow depth is low and thus the flow 
velocity is high. Also, the type of flow can be determined easily by checking Froude number. 

  

 
 
 
13-123  
Solution Water flows uniformly in a trapezoidal channel. For a given flow depth, it is to be determined whether the 
flow is subcritical or supercritical. 

Assumptions The flow is uniform.  

 Analysis The flow area and the average velocity are 

  2m76.2
2

m ]m)/tan45 60.0(244[
m) 60.0(

2

)tan/2(








ybb
yAc  

 m/s 522.6
m2.76

sm18
2

3


cA

V
V

 

When calculating the Froude number, the hydraulic depth should be used rather than the maximum depth or the hydraulic 
radius. For a non-rectangular channel, hydraulic depth is defined as the ratio of the flow area to top width, 

 m5308.0
m)45tan/60.024(

m76.2

tan/2 widthTop

2








yb

AA
yy cc

h  

Then the Froude number becomes 86.2
m))(0.5308m/s(9.81

m/s6.522
Fr

2


gy

V
, which is greater than 1. 

Therefore, the flow is supercritical. 
Discussion The analysis is approximate since the edge effects are significant here compared to a wide rectangular 
channel, and thus the results should be interpreted accordingly. 

  

 

b 

y 

4 m/s 

b = 4 m

y = 0.6 m 

 =45  
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13-78

13-124    
 

Solution The flow of water in a rectangular channel is considered. The effect of bottom slope on the flow rate is to 
be investigated as the bottom angle varies from 0.5 to 10. 
 

Assumptions 1 The flow is steady and uniform. 2 Roughness coefficient is constant along the channel.  

Properties Manning coefficient for an open channel made of finished concrete is n = 0.012 (Table 13-1).    

Analysis The EES Equations window is printed below, along with the tabulated and plotted results. 
 
 

a=1 
b=5 
Vdot = 12 "m3/s" 
n=0.012 
 
s=tan(teta) 
Ac=b*y 
p=b+2*y 
Rh=Ac/p 
Vdot=(a/n)*Ac*Rh^(2/3)*SQRT(s) 

 
Bottom angle, 

 
Flow depth, 

y, m 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 
8.0 
8.5 
9.0 
9.5 

10.0 

0.533 
0.427 
0.375 
0.343 
0.320 
0.302 
0.287 
0.276 
0.266 
0.257 
0.250 
0.243 
0.237 
0.231 
0.226 
0.222 
0.218 
0.214 
0.210 
0.207 

 
 

Discussion Note that the flow depth decreases as the bottom angle increases, as expected.      
  

 

b = 5 m

y 
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13-79

13-125    
 

Solution The flow of water in a trapezoidal channel is considered. The effect of bottom slope on the flow rate is to 
be investigated as the bottom angle varies from 0.5 to 10. 
 

Assumptions 1 The flow is steady and uniform. 2 Roughness coefficient is constant along the channel.  

Properties Manning coefficient for an open channel made of finished concrete is n = 0.012 (Table 13-1).    

Analysis The EES Equations window is printed below, along with the tabulated and plotted results. 
 

a=1 
b=5 
Vdot = 12 "m3/s" 
n=0.012 
 
s=tan(teta) 
Ac=y*(b+y/tan(45)) 
p=b+2*y/sin(45) 
Rh=Ac/p 
Vdot=(a/n)*Ac*Rh^(2/3)*SQRT(s) 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion As expected, flow depth decreases with increasing bottom angle, but the relationship is far from linear. 
  

 

Bottom 
angle,  

Flow depth, 
y, m 

0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 
8.0 
8.5 
9.0 
9.5 

10.0 

0.496 
0.403 
0.357 
0.327 
0.306 
0.290 
0.276 
0.266 
0.256 
0.248 
0.241 
0.235 
0.229 
0.224 
0.220 
0.215 
0.211 
0.208 
0.204 
0.201 

b = 5 m

y  

 =45  
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13-126  

Solution The flow of water in a trapezoidal channel is considered. For a given flow depth and bottom slope, the flow 
rate is to be determined. 
 

Assumptions 1 The flow is steady and uniform. 2 Bottom slope is constant. 3 Roughness coefficient is constant along the 
channel.  

Properties The Manning coefficient for a brick-lined open channel is n = 0.015 (Table 13-1).  

Analysis The flow area, wetted perimeter, and hydraulic radius of the channel are  

  2m83.10
tan25

m1.5
m4m)(1.5

tan
















 


y

byAc  

m10.11
sin25

m)(1.52
m4

sin

2






y

bp  

m9758.0
m 11.10

m 10.83 2


p

A
R c

h  

Bottom slope of the channel is So = 0.001.Then the flow rate can be determined from 
Manning’s equation to be 

sm22.5 3 2/12/32
1/3

2/1
0

3/2 )001.0(m) 9758.0()m 83.10(
015.0

/m 1 s
SRA

n

a
hcV  

Discussion Note that the flow rate in a given channel is a strong function of the bottom slope.    
  

 
 
 
 
 

13-127  
Solution The flow of water in a rectangular channel is considered. For a given flow depth and bottom slope, the 
flow rate is to be determined.  
 

Assumptions 1 The flow is steady and uniform. 2 Bottom slope is constant. 3 Roughness coefficient is constant along the 
channel.  

Properties The Manning coefficient is given to be n = 0.012 (Table 13-1).  

Analysis The flow area, wetted perimeter, and hydraulic radius of the channel are  

 2m 98.1m) m)(0.9 2.2(  byAc  m 0.4m 0.92m .22 p  

 m 495.0
m 0.4

m 98.1 2


p

A
R c

h  

Bottom slope of the channel is  

 01047.06.0tan0  S  

Then the flow rate can be determined from Manning’s equation to be 

 sm10.6 3 2/12/32
1/3

2/1
0

3/2 )01047.0(m) 495.0()m 98.1(
012.0

/m 1 s
SRA

n

a
hcV  

Discussion Note that the flow rate in a given channel is a strong function of the bottom slope.    
  

 
 

b = 4 m 

 = 25 
y = 1.5 m 

25 

b = 2.2 m

y = 0.9 m 
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13-128  
Solution Water flows in a rectangular channel. The flow depth below which the flow is supercritical is to be 
determined. 
 

Assumptions The flow is uniform.    

Analysis The flow depth below which the flow is super critical is 
the critical depth yc determined from 

 m 1.62






















1/3

22

233/1

2

2

m) )(7m/s (9.81

/s)m(45

gb
yc

V
     

Therefore, flow is supercritical for y < 1.62 m.              

Discussion Note that a flow is more likely to exist as supercritical when the flow depth is low and thus the flow 
velocity is high. 

  

 
 
 
 
 
 
 

13-129  
Solution Waters flows in a partially filled circular channel made of finished concrete. For a given flow depth and 
bottom slope, the flow rate is to be determined. 

Assumptions 1 The flow is steady and uniform. 2 Bottom slope is constant. 3 Roughness coefficient is constant along the 
channel.  

Properties Manning coefficient for an open channel made of finished concrete is n = 0.012 (Table 13-1).    

Analysis From geometric considerations,   

 

203.1
360

2
68.968.9              36.0

5.0

32.05.0
cos 








R

yR
 

222 m 2169.0)]203.1cos()203.1sin([1.203m) 5.0()cossin(  RAc  

m 0.1803m) 5.0(
)203.1(2

)203.1cos()203.1sin(203.1

2

cossin






 R

p

A
R c

h 


 

Then the flow rate can be determined from Manning’s equation to be 

sm0.258 3 2/12/32
1/3

2/1
0

3/2 )002.0(m) 1803.0()m 2169.0(
012.0

/m 1 s
SRA

n

a
hcV  

Discussion Note that the flow rate in a given channel is a strong function of the bottom slope.    
  

 
 

y = 0.32 m 

R = 0.5 m 

 

75 m 

y 

45 m3/s 
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13-130    
 

Solution The previous problem is reconsidered. By varying the flow depth-to-radius ratio from 0.1 to 1.9 for a fixed 
value of flow area, it is the to be shown that the best hydraulic cross section occurs when the circular channel is half-full, 
and the results are to be plotted. 
 

Analysis The EES Equations window is printed below, along with the tabulated and plotted results. 
 

a=1 
n=0.012 
s=0.002 
Ac=0.1536 “Flow area kept constant” 
ratio=y/R “This ratio is varied from 0.1 to 1.9” 
bdeg=arcsin((R-y)/R) 
tetadeg=90-bdeg 
teta=tetadeg*2*pi/360 
Ac=R^2*(teta-sin(tetadeg)*cos(tetadeg)) 
p=2*teta*R 
Rh=Ac/p 
Vdot=(a/n)*Ac*Rh^(2/3)*SQRT(s) 

 

Depth-to-
radius ratio, 

y/R 

Channel 
radius, 
R, m 

Flow rate, 

V,m3/s 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 

1.617 
0.969 
0.721 
0.586 
0.500 
0.440 
0.396 
0.362 
0.335 
0.313 
0.295 
0.279 
0.267 
0.256 
0.247 
0.239 
0.232 
0.227 
0.223 

0.1276 
0.1417 
0.1498 
0.1553 
0.1592 
0.1620 
0.1639 
0.1652 
0.1659 
0.1661 
0.1659 
0.1653 
0.1642 
0.1627 
0.1607 
0.1582 
0.1550 
0.1509 
0.1453 

 

Discussion The depth-to-radius ratio of y/R = 1 corresponds to a half-full circular channel, and it is clear from the table 
and the chart that, for a fixed flow area, the flow rate becomes maximum when the channel is half-full.    

  

 
 
 

y 

R 

 
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13-131  
Solution The flow of water through a parabolic notch is considered. A relation is to be developed for the flow rate, 
and its numerical value is to be calculated. 
 

Assumptions 1 The flow is steady. 2 All frictional 
effects are negligible, and Toricelli’s equation can be 
used for the velocity.     

Analysis The notch is parabolic with y = 0 at x = 0, 

and thus it can be expressed analytically as 2Cxy  . 

Using the coordinates of the upper right corner, the value 
of the constant is determined to be 

 22 22 4C y / x H / b / H / b    = 

   2 -14 0 5 m 0 4 m 12 5 m. / . . . 

A differential area strip can be expressed as 

 dyCyxdydA /22   

Noting that the flow velocity is )(2 yHgV  , the flow rate through this differential area is  

   dyyHyCgdyCyyHgdyCyVVdA )(/22/2)(2/2   

Then the flow rate through the entire notch is determined by integration to be 

 dyyHyCgVdA
H

y
)(/22

0
  A

V  

where  

  2

0

2

2
2

0 162

2
tan

8
)2(

4

1
)( H

yHy

Hy
Arc

H
yHyHydyyHy

H

H

y



































 

 

Then the expression for the volume flow rate and its numerical value become 

 
2

2 2 2 2
-1

2 2(9.81 m/s )
(0.4920 m/s) (0.492 m/s)(0.5 m)

8 8 12.5 m

g
H H H

C

 
    & 30.123 m /sV  

Discussion Note that a general flow rate equation for parabolic notch would be in the form of  2KHV , where 

C

g
Cd

2

8


K  and Cd is the discharge coefficient whose value is determined experimentally to account for nonideal 

effects. 
  

 
 
 

H = 0.5 m y 
x 

b = 0.4 m 

dy 2x 



Chapter 13 Open-Channel Flow 

 
PROPRIETARY MATERIAL. © 2014 by McGraw-Hill Education.  This is proprietary material solely for authorized instructor use. 
Not authorized for sale or distribution in any manner.  This document may not be copied, scanned, duplicated, forwarded, distributed, or 
posted on a website, in whole or part. 

13-84

13-132  
Solution Water is flowing through a channel with nonuniform surface properties. The flow rate through the channel 
and the effective Manning coefficient are to be determined.  
 

Assumptions 1 The flow is steady and 
uniform. 2 The bottom slope is 
constant. 3 The Manning coefficients 
do not vary along the channel.  

Analysis The channel involves 
two parts with different roughness, and 
thus it is appropriate to divide the 
channel into two subsections. The flow 
rate for each subsection can be 
determined from the Manning equation, 
and the total flow rate can be 
determined by adding them up.  
The flow area, perimeter, and hydraulic radius for each subsection and the entire channel are: 

 Subsection 1: 2m 61 cA , m 61 p , m 00.1
m 6

m 6 2

1

1
1 

p

A
R c

h      

 Subsection 2: 2m 102 cA ,  m 112 p , m 909.0
m 11

m 10 2

2

2
2 

p

A
R c

h      

 Entire channel: 2m 16cA , m 17p , m 941.0
m 17

m 16 2


p

A
R c

h      

Applying the Manning equation to each subsection, the total flow rate through the channel becomes  

 

/sm37.2 3















1/2
2/322/32

1/3

2/1
0

3/2
22

2

2/1
0

3/2
11

1
21

)(tan0.5
0.075

m)909.0)(m(10

0.022

m)(1)m(6
/s)m(1

SRA
n

a
SRA

n

a
VVV 

 

Knowing the total flow rate, the effective Manning coefficient for the entire channel can be determined from the Manning 
equation to be  

 0.0386
s/m 2.37

)00873.0(m) 941.0)(m 16)(s/m 1(
3

2/12/321/32/1
0

3/2

eff
V

SRaA
n hc  

Discussion The effective Manning coefficient neff of the channel turns out to lie between the two n values, as expected. 
The weighted average of the Manning coefficient of the channel is nave=(n1p1+ n2p2)/p = 0.056, which is quite different than 
neff. Therefore, using a weighted average Manning coefficient for the entire channel may be tempting, but it would not be 
so accurate.  

  

 
 

Heavy brush 
n2 = 0.075 

1 m 

 10 m 

1 m 

Clean earth channel 
n1 = 0.022 
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13-85

13-133  
Solution Two identical channels, one rectangular of bottom width b and one circular of diameter D, with identical 
flow rates, bottom slopes, and surface linings are considered. The relation between b  and D is to be determined for the 
case of the flow height y = b and the circular channel is flowing half full. 
  

Assumptions 1 The flow is steady and uniform. 2 Bottom slope is constant. 3 Roughness coefficient is constant along the 
channel.  

Analysis The cross-sectional area, perimeter, and hydraulic radius of the rectangular channel are     

           2bAc  ,     bp 3 ,  and  
33b

2 bb

p

A
R c

h       

Then using the Manning equation, the flow rate can be expressed as 

3/2

3/8
2/1

0
2/1

0

3/2
22/1

0
3/2

rec
33

b
S

n

a
S

b
b

n

a
SRA

n

a
hc 






V  

The corresponding relations for the semi-circular channel are     

           
8

2D
Ac


 ,   

2

D
p


 , and   

4

D

p

A
R c

h       

and  

3/2

3/8
2/1

0
2/1

0

3/22
2/1

0
3/2

cir
4848 









D
S

n

a
S

DD

n

a
SRA

n

a
hc

V  

Setting the flow rates in the two channels equal to each other reccir VV    gives 

     2/1
03/2

3/8

3/2

3/8
2/1

0
483

S
D

n

ab
S

n

a





    

3/2

3/8

3/2

3/8

483 


Db 
       655.0

48

3
8/3

3/2

3/2














D

b
 

Therefore, the desired relation is    b = 0.655D. 

Discussion Note that the wetted perimeters in this case are prec = 3b = 2.0D and pcir = D/2 = 1.57D. Therefore, the 
semi-circular channel is a more efficient channel than the rectangular one.  

  

 

D 

b

b 
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13-134  
Solution The flow of water through a V-shaped open channel is considered. The angle  the channel makes from 
the horizontal is to be determined for the case of most efficient flow. 
 

Assumptions 1 The flow is steady and uniform. 2 The bottom slope is constant. 3 The roughness coefficient is constant.  
 
Analysis We let the length of the sidewall of the channel be x. From trigonometry,     

  sin               sin xy
x

y
   cos               cos xb

x

b
  

Then the cross-sectional area and the perimeter of the flow section become 

 



2sin

2
           2sin

2
sincos

2
c

c
A

x
x

xbyA       

 2/1)2(sin22               
2sin

2
22  

 c
c Ap

A
xp  

Now we apply the criterion that the best hydraulic cross-section for an open channel is the one with the minimum wetted 
perimeter for a given cross-section. Taking the derivative of p with respect to θ while holding Ac constant gives 

 










2cos2

)2(sin2

3
22

)2(sin

)2(sin

])2[(sin
22

])2[(sin
22

2/3

2/12/1 




ccc A
d

d

d

d
A

d

d
A

d

dp
 

Setting dp/d = 0 gives 02cos  , which is satisfied when 2 = 90. Therefore, the criterion for the best hydraulic cross-
section for a triangular channel is determined to be   = 45. 
 
Discussion The procedure used here can be used to determine the best hydraulic cross-section for any geometric shape.    

  

 

 
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13-135  
Solution The flow rate in an open channel is to be measured using a sharp-crested rectangular weir. For a measured 
value of flow depth upstream, the flow rate is to be determined. 
 
 
 
 
 
 
 
 
 
 
 
 

Assumptions 1 The flow is steady. 2 The upstream velocity head is negligible. 3 The channel is sufficiently wide so that 
the end effects are negligible.    

Analysis The weir head is given to be H = 0.60 m. The discharge coefficient of the weir is 

          6469.0
m 1.1

m 60.0
0897.0598.00897.0598.0rec, 

w
wd P

H
C  

The condition H/Pw < 2 is satisfied since 0.60/1.1 = 0.55. Then the water flow rate through the channel becomes  

/sm 5.33 3





2/32

2/3
rec,

)m 60.0()m/s 2(9.81m) 6(
3

2
)6469.0(

2
3

2
HgbCwdV

 

 

Discussion The upstream velocity and the upstream velocity head are 

 m/s 522.0
m) m)(1.70 (6

/sm 33.5 3

1
1 

by
V

V
   and     m 014.0

)m/s 2(9.81

m/s) 522.0(

2 2

22
1 
g

V
 

This is 2.3% of the weir head, which is negligible. When the upstream velocity head is considered, the flow rate becomes 
5.50 m3/s, which is about 3 percent higher than the value determined above. Therefore, the assumption of negligible 
velocity head is reasonable in this case.   

  

 
 

 Sharp-crested 
rectangular weir 

Pw = 1.1 m 

H = 0.60 m 
V1  

y1 
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13-136E  
Solution Water is to be transported in a rectangular channel at a specified rate. The dimensions for the best cross-
section if the channel is made of unfinished concrete are to be determined. 
 

Assumptions 1 The flow is steady and uniform. 2 The bottom slope is constant. 3 The roughness coefficient is constant.  

Properties The Manning coefficient is n = 0.014 for channels made of unfinished concrete (Table 13-1).    

Analysis For best cross-section of a rectangular cross-section, y = b/2. Then Ac = yb = b2/2, and Rh = b/4. 

The flow rate is determined from the Manning equation, 2/1
0

3/2 SRA
n

a
hcV .  

(a) Bottom drop of 5 ft per mile: 0009470.0ft) 5280/(ft) 5( s  

2/12/32
1/3

3 )0009470.0()4/()2/(
014.0

/ft 486.1
/sft 200 bb

s
  

Solving the above equation gives b = 8.58 ft, and y = b/2 = 4.29 ft. 

(b) Bottom drop of 10 ft per mile: 001894.0ft) 5280/(ft) 10( s  

2/12/32
1/3

3 )001894.0()4/()2/(
014.0

/ft 486.1
/sft 200 bb

s
  

Solving the above equation gives b = 7.54 ft, and y = b/2 = 3.77 ft. 
 

Discussion The concept of best cross-section is an important consideration in the design of open channels because it 
directly affects the construction costs. 

  

 
 

b

y = b/2 
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13-89

13-137E  

Solution Water is to be transported in a trapezoidal channel at a specified rate. The dimensions for the best cross-
section if the channel is made of unfinished concrete are to be determined. 

Assumptions 1 The flow is steady and uniform. 2 Bottom slope is constant. 3 Roughness coefficient is constant along the 
channel.  

Properties The Manning coefficient is n = 0.014 for channels made of unfinished concrete (Table 13-1).    

Analysis For best cross-section of a trapezoidal channel of bottom width b,  = 60 and 2/3by  . Then, 

22 375.0)60cos1(35.0)cos( bbbbyAc   , bp 3 , and b
y

Rh 4

3

2
 . 

The flow rate is determined from the Manning equation, 2/1
0

3/2 SRA
n

a
hcV ,  

(a) Bottom drop of 5 ft per mile: 

 0009470.0ft) 5280/(ft) 5( s  

 2/12/32
1/3

3 )0009470.0()4/3()375.0(
014.0

/ft 486.1
/sft 200 bb

s
  

Solving for b yields b = 5.23 ft, and y = 4.53 ft 

 

(b) Bottom drop of 10 ft per mile: 

 001894.0ft) 5280/(ft) 10( s  

 2/12/32
1/3

3 )001894.0()4/3()375.0(
014.0

/ft 486.1
/sft 200 bb

s
  

Solving for b yields b = 4.59 ft, and y = 3.98 ft 
 

Discussion The concept of best cross-section is an important consideration in the design of open channels because it 
directly affects the construction costs. 

  

 
 

b
60 

b
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13-90

13-138E  
Solution The flow rates in two open channels are to be measured using a sharp-crested weir in one and a broad-
crested rectangular weir in the other. For identical flow depths, the flow rates through both channels are to be determined. 
 
 

 
 
 
 
 
 
 

Assumptions 1 The flow is steady. 2 The upstream velocity head is negligible. 3 The channel is sufficiently wide so that 
the end effects are negligible.    

Analysis The weir head is 

           ft .02ft3.0ft5.01  wPyH      

The condition H/Pw < 2 is satisfied since 2.0/3.0 = 0.667. The discharge coefficients of the weirs are 

Sharp-crested weir:   

6578.0
ft 0.3

ft 0.2
0897.0598.00897.0598.0sharp, 

w
wd P

H
C  

/sft 149 3 2/322/3
,sharp )ft 0.2()ft/s 2(32.2ft) 15(

3

2
)6578.0(2

3

2
HgbC sharpwdV  

Broad-crested weir: 

      5035.0
ft) ft)/(3.0 0.2(1

65.0

/1

65.0
broad, 







w
wd

PH
C  

 /sft 66.0 3





 2/323/22/3

2/3

broad,broad )ft 0.2(ft/s 32.2ft)(2/3) 15)(5035.0(
3

2
HgbCwdV  

Discussion Note that the flow rate in the channel with the broad-crested weir is much less than the channel with the 
sharp-crested weir. Also, if the upstream velocity is taken into consideration, the flow rate would be 155 ft3/s (4% 
difference) for the channel with the sharp-crested weir, and 66.6 ft3/s (0.9% difference) for the one with broad-crested weir. 
Therefore, the assumption of negligible dynamic head is not quite appropriate for the channel with the sharp-crested weir.  
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13-91

13-139    
 

Solution The flow of water through a parabolic notch is considered. A relation is to be developed for the flow rate, 
and its numerical value is to be calculated. 
 

Assumptions 1 The flow is steady. 2 All frictional 
effects are negligible, and Toricelli’s equation can be 
used for the velocity.     

 
 
 
 
 
 
 
 
 
Analysis Consider a differential strip area shown 
on the sketch. It can be expressed as 

dyybdydA )2/tan(2   

Noting that the flow velocity is )(2 yHgV  , the flow rate through this differential area is  

  dyyHygdyyyHgdyyVVdA  )2/tan(22)2/tan(2)(2)2/tan(2   

Then the flow rate through the entire notch is determined by integration to be 

dyyHygVdA
H

y
  0

)2/tan(22 
A

V  

where 

          2/5

0

2/32/5

0 15

4

3

2

5

2
HHyydyyHy

HH

y




  

 

Then the expression for the volume flow rate and its numerical value become 

      )2/tan(07382.0)25.0)(2/tan(
15

)m/s 81.9(28
)2/tan(

15

28 2/5
2

2/5   H
g

V    (m3/s) 

   = 25:    0 07382tan 25 2. /  V& 30.0164 m /s  

 = 40:    0 07382tan 40 2. /  V& 30.0269 m /s  

 = 60:    0 07382tan 60 2. /  V& 30.0426 m /s  

 = 75:    0 07382tan 75 2. /  V& 30.0566 m /s  

These results are plotted, using EES.  

Discussion Note that a general flow rate equation for the V-notch would be in the form of 2/5)2/tan( HK V , 

where 15/28 gCdK  and Cd is the discharge coefficient whose value is determined experimentally to account for 

nonideal effects. 
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13-92

13-140  
Solution Water flows uniformly half-full in a circular channel. For specified flow rate and bottom slope, the 
Manning coefficient is to be determined. 

Assumptions 1 The flow is steady and uniform. 2 Bottom slope is constant. 3 Roughness coefficient is constant along the 
channel. 

Analysis The flow area, wetted perimeter, and hydraulic radius of the channel are 

m021.4
2

m)(1.6

2

22


R

Ac  

m027.5
2

m)(1.62

2

2


R
p  

m8.0
2

m1.6

2

2/2


R

R

R

p

A
R c

h 


 

Then the Manning coefficient can be determined from Manning’s equation to be 

2/1
0

3/2 SRA
n

a
hcV  

from which we solve for n, 

0.0487
/sm5.4

)004.0(m)8.0)(m021.4(/s)m1(
3

1/22/321/32/1
0

3/2

V
SRaA

n hc  

When calculating the Froude number, the hydraulic depth should be used rather than the maximum depth or the hydraulic 
radius. For a non-rectangular channel, hydraulic depth is defined as the ratio of the flow area to top width,  

m257.1
4

m)(1.6

42

2/

 widthTop

2


 R

R

RA
y c

h  

 m/s119.1
m021.4

/sm5.4
2

3


cA

V
V

 

 0.319
m)257.1()m/s 81.9(

m/s119.1
Fr

2gy

V
 

which is lower than 1. Therefore, the flow is subcritical. 
 

Discussion It appears that this channel is made of cast iron or unplaned wood .    
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13-141  
Solution Water flow through a wide rectangular channel undergoing a hydraulic jump is considered. It is to be 
shown that the ratio of the Froude numbers before and after the jump can be expressed in terms of flow depths y1 and y2 

before and after the jump, respectively, as  31221 /Fr/Fr yy . 
 

Assumptions 1 The flow is steady.  2 The channel is sufficiently wide so that the end effects are negligible.   

Analysis The Froude number for a wide channel of width b and flow depth y is given as 

3

/
Fr

gybgybygy

by
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V VVV 
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Expressing the Froude number before and after the jump and taking 
their ratio gives 
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

 

which is the desired result.  

Discussion Using the momentum equation, other relations such as 




  2

112 Fr81150 y.y  can also be developed. 
  

 
 
 

FIGURE 13-51 
Control volume that encloses the 

hydraulic jump.  
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13-94

13-142  
Solution A sluice gate with free outflow is used to control the flow rate of water. For specified flow depths, the 
flow rate per unit width and the downstream flow depth and velocity are to be determined. 
 

Assumptions 1 The flow is steady or quasi-steady. 2 The channel is 
sufficiently wide so that the end effects are negligible.    

Analysis For free outflow, we only need the depth ratio y1/a to 
determine the discharge coefficient (for drowned outflow, we also need to 
know y2/a and thus the flow depth y2 downstream the gate), 

           6.5
m 0.50

m 2.81 
a

y
      

The corresponding discharge coefficient is determined from Fig. 13-44 to 
be Cd = 0.56. Then the discharge rate per m width becomes 

/sm 2.08 3 /sm 075.2m) 8.2)(m/s (9.812m) m)(0.50 1(56.02 32
1gybaCdV  

The specific energy of a fluid remains constant during horizontal flow when the frictional effects are negligible, 

21 ss EE  . With these approximations, the flow depth and velocity past the gate become 

m 828.2
m)] m)(2.8 (1)[m/s 2(9.81

)/sm (2.075
m 8.2

)(22 22

23

2
1

2

1

2
1

11 
byg

y
g

V
yEs

V
 

12
2

2

2

2
2

22
)(22 ss E

byg
y

g

V
yE 

V
    m 828.2

)]m)( (1)[m/s 2(9.81

)/sm (2.075
2

2
2

23

2 
y

y  

It gives y2 = 0.294 m for flow depth as the physically meaningful root (positive and less than 2.2 m). Also,   

 m/s 7.06
m) m)(0.294 (1

/sm 075.2 3

2
2 byA

V
c

VV 
 

Discussion In actual gates some frictional losses are unavoidable, and thus the actual velocity downstream will be 
lower. 
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13-143  
Solution Water at a specified depth and velocity undergoes a hydraulic jump. The fraction of mechanical energy 
dissipated is to be determined. 
 

Assumptions 1 The flow is steady or quasi-steady. 2 The channel is sufficiently wide so that the end effects are 
negligible. 3   The channel is horizontal. 

Analysis The Froude number before the hydraulic jump is 

           1
1 2

1

8 m/s
Fr 3.8076

(9.81 m/s )(0.45 m)

V

gy
        

which is greater than 1. Therefore, the flow is indeed supercritical 
before the jump. The flow depth, velocity, and Froude number after the 
jump are 

    2 2
2 1 10 5 1 1 8Fr 0.5(0.45 m) 1 1 8 3.8076 2.2086 my . y           

 1
2 1

2

0.45 m
(8 m/s) 1.6300 m/s

2.2086 m

y
V V

y
     2

2 2
2

1.6300 m/s
Fr 0.35019

(9.81 m/s )(2.2086 m)

V

gy
        

The head loss and the fraction of mechanical energy dissipated during the jump are 

 
2 2 2 2

1 2
1 2 2

(8 m/s) -(1.6300 m/s)
(0.45 m)-(2.2086 m) 1.3680 m

2 2(9.81 m/s )L

V V
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g


       

 
2 2

1 1 1

1.3680 m
Dissipation ratio 0.36853

(1 Fr / 2) (0.45 m)(1 3.8076 / 2)
L L

s

h h

E y
   

 
 

 

or, in terms of percentage, the dissipation ratio is 36.9%. 
 
Discussion Note that almost over one-third of the mechanical energy of the fluid is dissipated during hydraulic jump.    

  

FIGURE 13-51 
Control volume that encloses the 

hydraulic jump.  

Energy 
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13-144  
Solution The flow depth and average velocity of water after a hydraulic jump together with approach velocity to 
sluice gate are given. The flow rate per m width, the flow depths before and after the gate, and the energy dissipation ratio 
are to be determined.  
 
 
 
 
 
 
 
 
  
 
 
 
 

Assumptions 1 The flow is steady or quasi-steady. 2 The channel is sufficiently wide so that the end effects are 
negligible.  

Analysis The flow rate per m width of channel, flow depth before the sluice gate, and the Froude number after the 
jump is 

 /sm 12 3 m) m)(3  m/s)(1 4(3333 byVAV cV  

 m 9.60 )m 3(
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3
3 
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The flow dept, velocity, and Froude number before the jump are 
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which is greater than 1, and thus the flow before the jump is indeed supercritical. The head loss and the fraction of 
mechanical energy dissipated during hydraulic jump are 

 m 0463.0
)m/s 2(9.81

m/s) (4-m/s) (6.094
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Discussion Note that this is a “mild” hydraulic jump, and only 1.2% of the mechanical energy is wasted.    
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Solution The flow depth and average velocity of water after a hydraulic jump together with approach velocity to 
sluice gate are given. The flow rate per m width, the flow depths before and after the gate, and the energy dissipation ratio 
are to be determined. 
 
 
 
 
 
 
 
 
  
 
 
 
 

Assumptions 1 The flow is steady or quasi-steady. 2 The channel is sufficiently wide so that the end effects are 
negligible.  

Analysis The flow rate per m width of channel, flow depth before the sluice gate, and the Froude number after the 
jump is 

/sm 9.6 3 m) m)(3 m/s)(1 2.3(3333 byVAV cV  
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The flow depth, velocity, and Froude number before the jump are 
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which is greater than 1, and thus the flow before the jump is indeed supercritical. The head loss and the fraction of 
mechanical energy dissipated during hydraulic jump are 
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Discussion Note that this hydraulic jump wastes 6.2% of the mechanical energy of the fluid.    
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13-146  

Solution Water from a lake is discharged through a sluice gate into a channel where uniform flow conditions are 
established, and then undergoes a hydraulic jump. The flow depth, velocity, and Froude number after the jump are to be 
determined. 

Assumptions 1 The flow is steady. 2 The channel is 
sufficiently wide so that the end effects are negligible. 3 
The effects of channel slope on hydraulic jump are 
negligible.  

Properties  The Manning coefficient for an open 
channel made of finished concrete is n = 0.012 (Table 13-
1).    

Analysis For free outflow, we only need the depth 
ratio y1/a to determine the discharge coefficient, 

           10
m 0.5

m 51 
a

y
      

The corresponding discharge coefficient is determined from Fig. 13-41 
to be Cd = 0.58. Then the discharge rate per m width (b = 1 m) becomes 

/sm 872.2m) 5)(m/s (9.812m) m)(0.5 1(58.02 32
1  gybaCdV  

For wide channels, hydraulic radius is the flow depth and thus Rh = y2. Then the flow depth in uniform flow after the gate is 
determined from the Manning’s equation to be 

2/1
0

3/2 SRA
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It gives y2 = 0.6948 m, which is also the flow depth before water undergoes a hydraulic jump. The flow velocity and 
Froude number in uniform flow are 

m/s134.4
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Then the flow depth, velocity, and Froude number after the jump (state 3) become  

         m 1.25
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Discussion This is a relatively “mild” jump. It can be shown that the head loss during hydraulic jump is 0.049 m, which 
corresponds to an energy dissipation ratio of 3.1%.    
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13-147  
Solution Water is discharged from a dam into a wide spillway to reduce the risk of flooding by dissipating a large 
fraction of mechanical energy via hydraulic jump. For specified flow depths, the velocities before and after the jump, and 
the mechanical power dissipated per meter with of the spillway are to be determined. 
 

Assumptions 1 The flow is steady or quasi-steady. 2 The channel is sufficiently wide so that the end effects are 
negligible.  

Properties The density of water is 1000 kg/m3.     

Analysis The Froude number and velocity before the jump are  

       




  2

1
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m 5
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which gives Fr1 = 5.393. Also, from the definition of Froude number, 
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Velocity and Froude number after the jump are  
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The head loss is determined from the energy equation to be  
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The volume and mass flow rates of water per m width are 

/sm892.9m) m)(0.7 1)(m/s 13.14( 3
1111  byVAV cV  
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Then the dissipated mechanical power becomes 
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Discussion The results show that the hydraulic jump is a highly dissipative process, wasting 551 kW of power in this 
case.  
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13-148  
Solution Water flowing in a horizontal open channel encounters a bump. Flow properties over the bump are to be 
determined. 
 

Assumptions 1 The flow is steady. 2 Frictional effects are negligible 
so that there is no dissipation of mechanical energy. 3 The channel is 
sufficiently wide so that the end effects are negligible.    

Analysis The upstream Froude number and the critical depth are 
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The upstream flow is subcritical since Fr < 1, and the flow depth decreases over the bump. The upstream, over the bump, 
and critical specific energy are  
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The flow depth over the bump can be determined from 

0
2

)( 2
1

2
12

21
3
2  y

g

V
yzEy bs           0m) 80.1(

)m/s 2(9.81

m/s) 25.1(
)m 20.088.1( 2

2

2
2
2

3
2  yy  

Using an equation solver, the physically meaningful root of this equation is determined to be  y2 = 1.576 m. Then, 
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Discussion The actual values may be somewhat different than those given above because of the frictional effects that 
are neglected in the analysis. 
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13-149  
Solution Water flowing in a horizontal open channel encounters a bump. The bump height for which the flow over 
the bump is critical is to be determined. 
 

Assumptions 1 The flow is steady. 2 Frictional effects are negligible 
so that there is no dissipation of mechanical energy. 3 The channel is 
sufficiently wide so that the end effects are negligible.    

Analysis The upstream Froude number and the critical depth are 
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The upstream flow is subcritical since Fr < 1, and the flow depth decreases over the bump. The upstream specific energy is 
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Noting that the flow over the bump is critical and that bss zEE  12 , 

             m20.1m)802.0(
2

3

2

3
2  ccs yEE  

and 
             m 0.68 20.188.121 ssb EEz  

 
Discussion If a higher bump is used, the flow will remain critical but the flow rate will decrease (the choking effect). 
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13-102

 
 
Fundamentals of Engineering (FE) Exam Problems 
 
 

 

13-150  

Which ones are examples of open-channel flow? 

I. Flow of water in rivers   II. Draining of rainwater off highways 

III. Upward draft of rain and snow  IV. Sewer lines 

(a) I and II (b) I and III (c) II and III (d) I, II, and IV (e) I, II, III, and IV 

 

Answer  (d) I, II, and IV 

 

 

 

13-151  

If the flow depth remains constant in an open-channel flow, the flow is called 

(a) Uniform flow  (b) Steady flow  (c) Varied flow  (d) Unsteady flow 

(e) Laminar flow 

 

Answer  (a) Uniform flow 

   

 



Chapter 13 Open-Channel Flow 

 
PROPRIETARY MATERIAL. © 2014 by McGraw-Hill Education.  This is proprietary material solely for authorized instructor use. 
Not authorized for sale or distribution in any manner.  This document may not be copied, scanned, duplicated, forwarded, distributed, or 
posted on a website, in whole or part. 

13-103

13-152  

Consider water flow in a rectangular open channel of height 2 m and width 5 m containing water of depth 1.5 m. The 
hydraulic radius for this flow is 

(a) 0.47 m (b) 0.94 m (c) 1.5 m (d) 3.8 m (e) 5 m 

 

Answer  (b) 0.94 m 

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 
screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

h=2 [m] 
b=5 [m] 
y=1.5 [m] 
A_c=y*b 
p=b+2*y 
R_h=A_c/p 

 

 

 

13-153  

Water flows in a rectangular open channel of width 5 m at a rate of 7.5 m3/s. The critical depth for this flow is 

(a) 5 m  (b) 2.5 m (c) 1.5 m (d) 0.96 m (e) 0.61 m 

 

Answer  (e) 0.61 m 

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 
screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

b=5 [m] 
V_dot=7.5 [m^3/s] 
g=9.81 [m/s^2] 
y_c=(V_dot^2/(g*b^2))^(1/3) 
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13-154  

Water flows in a rectangular open channel of width 0.6 m at a rate of 0.25 m3/s. If the flow depth is 0.2 m, what is the 
alternate flow depth if the character of flow were to change? 

(a) 0.2 m (b) 0.26 m (c) 0.35 m (d) 0.6 m (e) 0.8 m 

 

Answer  (c) 0.35 m 

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 
screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

b=0.6 [m] 
V_dot=0.25 [m^3/s] 
y1=0.2 [m] 
g=9.81 [m/s^2] 
E_s1=y1+V_dot^2/(2*g*b^2*y1^2) 
E_s2=y2+V_dot^2/(2*g*b^2*y2^2) 
E_s1=E_s2 

 

 

 

13-155  

Water flows in a 6-m-wide rectangular open channel at a rate of 55 m3/s. If the flow depth is 2.4 m, the Froude number is 

(a) 0.531 (b) 0.787 (c) 1.0  (d) 1.72  (e) 2.65 

 

Answer  (b) 0.787  

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 
screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

b=6 [m] 
V_dot=55 [m^3/s] 
y=2.4 [m] 
g=9.81 [m/s^2] 
A_c=y*b 
V=V_dot/A_c 
Fr=V/sqrt(g*y) 
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13-156  

Water flows in a clean and straight natural channel of rectangular cross section with a bottom width of 0.75 m and a bottom 
slope angle of 0.6. If the flow depth is 0.15 m, the flow rate of water through the channel is 

(a) 0.0317 m3/s (b) 0.05 m3/s (c) 0.0674 m3/s (d) 0.0866 m3/s (e) 1.14 m3/s 

 

Answer  (d) 0.0866 m3/s  

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 
screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

b=0.75 [m] 
alpha=0.6 [degrees] 
y=0.15 [m] 
a=1 [m^(1/3)/s] 
n=0.030 "from Table 13-1" 
g=9.81 [m/s^2] 
A_c=y*b 
p=b+2*y 
R_h=A_c/p 
S_0=tan(alpha) 
V_dot=a/n*A_c*R_h^(2/3)*S_0^(1/2) 

 

 

 

13-157  

Water is to be transported in a finished-concrete rectangular channel with a bottom width of 1.2 m at a rate of 5 m3/s. The 
channel bottom drops 1 m per 500 m length. The minimum height of the channel under uniform-flow conditions is   

(a) 1.9 m (b) 1.5 m (c) 1.2 m (d) 0.92 m (e) 0.60 m 

 

Answer  (a) 1.9 m  

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 
screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

b=1.2 [m] 
V_dot=5 [m^3/s] 
S_0=1/500 
a=1 [m^(1/3)/s] 
n=0.012 "from Table 13-1" 
g=9.81 [m/s^2] 
A_c=y*b 
p=b+2*y 
R_h=A_c/p 
V_dot=a/n*A_c*R_h^(2/3)*S_0^(1/2) 
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13-158  

Water is to be transported in a 4-m-wide rectangular open channel. The flow depth to maximize the flow rate is 

(a) 1 m  (b) 2 m  (c) 4 m  (d) 6 m  (e) 8 m 

 

Answer  (b)  2 m  

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 
screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

b=4 [m] 
y=b/2 

 

 

 

13-159  

Water is to be transported in a clay tile lined rectangular channel at a rate of 0.8 m3/s. The channel bottom slope is 0.0015. 
The width of the channel for the best cross section is 

(a) 0.68 m (b) 1.33 m (c) 1.63 m (d) 0.98 m (e) 1.15 m 

 

Answer  (e) 1.15 m  

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 
screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

V_dot=0.8 [m^3/s] 
S_0=0.0015 
a=1 [m^(1/3)/s] 
n=0.014 "from Table 13-1" 
g=9.81 [m/s^2] 
A_c=y*b 
p=b+2*y 
R_h=A_c/p 
y=b/2 
V_dot=a/n*A_c*R_h^(2/3)*S_0^(1/2) 
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13-160  

Water is to be transported in a clay tile lined trapezoidal channel at a rate of 0.8 m3/s. The channel bottom slope is 0.0015. 
The width of the channel for the best cross section is 

(a) 0.48 m (b) 0.70 m (c) 0.84 m (d) 0.95 m (e) 1.22 m 

 

Answer  (b) 0.70 m  

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 
screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

V_dot=0.8 [m^3/s] 
S_0=0.0015 
a=1 [m^(1/3)/s] 
n=0.014 "from Table 13-1" 
g=9.81 [m/s^2] 
theta=60 [degrees] 
A_c=y*(b+b*cos(theta)) 
p=3*b 
R_h=y/2 
y=sqrt(3)/2*b 
V_dot=a/n*A_c*R_h^(2/3)*S_0^(1/2) 

 

 

 

13-161  

Water flows uniformly in a finished-concrete rectangular channel with a bottom width of 0.85 m. The flow depth is 0.4 m 
and the bottom slope is 0.003. The channel should be classified as  

(a) Steep (b) Critical (c) Mild  (d) Horizontal (e) Adverse 

 

Answer  (c) Mild   

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 
screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

b=0.85 [m] 
y=0.4 [m] 
S_0=0.003 
a=1 [m^(1/3)/s] 
n=0.012 "from Table 13-1" 
g=9.81 [m/s^2] 
A_c=y*b 
p=b+2*y 
R_h=A_c/p 
V_dot=a/n*A_c*R_h^(2/3)*S_0^(1/2) 
y_c=(V_dot^2/(g*b^2))^(1/3) 
"Since y_n = y = 0.4 m is greater than y_c = 0.35 m, the flow is mild" 
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Water discharges into a rectangular horizontal channel from a sluice gate and undergoes a hydraulic jump. The channel is 
25-m-wide and the flow depth and velocity before the jump are 2 m and 9 m/s, respectively. The flow depth after the jump 
is 

(a) 1.26 m (b) 2 m  (c) 3.61 m (d) 4.83 m (e) 6.55 m 

 

Answer  (d) 4.83 m    

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 
screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

b=25 [m] 
y1=2 [m] 
V1=9 [m/s] 
g=9.81 [m/s^2] 
Fr_1=V1/sqrt(g*y1) 
y2=0.5*y1*(-1+sqrt(1+8*Fr_1^2)) 

 

 

 

13-163  

Water discharges into a rectangular horizontal channel from a sluice gate and undergoes a hydraulic jump. The flow depth 
and velocity before the jump are 1.25 m and 6 m/s, respectively. The percentage available head loss due to the hydraulic 
jump is 

(a) 4.7%  (b) 6.2%  (c) 8.5%  (d) 13.9% (e) 17.4% 

 

Answer  (a) 4.7%    

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 
screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

y1=1.25 [m] 
V1=6 [m/s] 
g=9.81 [m/s^2] 
Fr_1=V1/sqrt(g*y1) 
y2=0.5*y1*(-1+sqrt(1+8*Fr_1^2)) 
V2=y1/y2*V1 
h_L=y1-y2+(V1^2-V2^2)/(2*g) 
E_s1=y1+V1^2/(2*g) 
DR=h_L/E_s1 
PercentLoss=DR*Convert(,%) 
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Water discharges into a 7-m-wide rectangular horizontal channel from a sluice gate and undergoes a hydraulic jump. The 
flow depth and velocity before the jump are 0.65 m and 5 m/s, respectively. The wasted power potential due to the 
hydraulic jump is 

(a) 158 kW (b) 112 kW (c) 67.3 kW (d) 50.4 kW (e) 37.6 kW 

 

Answer  (e) 37.6 kW  

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 
screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

b=7 [m] 
y1=0.65 [m] 
V1=5 [m/s] 
rho=1000 [kg/m^3] 
g=9.81 [m/s^2] 
Fr_1=V1/sqrt(g*y1) 
y2=0.5*y1*(-1+sqrt(1+8*Fr_1^2)) 
V2=y1/y2*V1 
h_L=y1-y2+(V1^2-V2^2)/(2*g) 
m_dot=rho*b*y1*V1 
E_dot_wasted=m_dot*g*h_L*Convert(W, kW) 

 

 

 

13-165  

Water is released from a 0.8-m-deep reservoir into a 4-m-wide open channel through a sluice gate with a 0.1-m-high 
opening at the channel bottom. The flow depth after all turbulence subsides is 0.5 m. The rate of discharge is 

(a) 0.92 m3/s (b) 0.79 m3/s (c) 0.66 m3/s (d) 0.47 m3/s (e) 0.34 m3/s 

 

Answer  (c) 0.66 m3/s  

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 
screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

y1=0.8 [m] 
b=4 [m] 
a=0.1 [m] 
y2=0.5 [m] 
g=9.81 [m/s^2] 
y1\a=y1/a 
y2\a=y2/a 
C_d=0.415 "from Fig. 13-44 at y1/a and y2/a" 
V_dot=C_d*b*a*sqrt(2*g*y1) 
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The flow rate of water in a 3-m-wide horizontal open channel is being measured with a 0.4-m-high sharp-crested 
rectangular weir of equal width. If the water depth upstream is 0.9 m, the flow rate of water is   

(a) 1.37 m3/s (b) 2.22 m3/s (c) 3.06 m3/s (d) 4.68 m3/s (e) 5.11 m3/s 

 

Answer  (b) 2.22 m3/s 

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 
screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

b=3 [m] 
y1=0.9 [m] 
P_w=0.4 [m] 
g=9.81 [m/s^2] 
H=y1-P_w 
C_wd_rec=0.598+0.0897*H/P_w 
V_dot_rec=C_wd_rec*2/3*b*sqrt(2*g)*H^(3/2) 
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