Chemical Engineering 374

Fluid Mechanics

Pumps
Moses 1:33

33 And worlds without number have I created; and I also created them for mine own purpose; and by the Son I created them, which is mine Only Begotten.
Potential Seminar

TRIUMPHS AND FAILURES IN 21ST-CENTURY EUROPEAN ENERGY POLICY

Nicholas Mason
(European Studies)

Matthew Memmott
(Chemical Engineering)

Chip Oscarson
(Comparative Arts and Letters)

Wednesday, 16 November
4:00 p.m.
238 HRCC

While Europe is widely hailed for its efforts to adopt clean energy sources and take other steps to thwart climate change, it remains heavily dependent on fossil fuels and deeply ambivalent about nuclear power. At this Café Europa event, three BYU faculty members with expertise on nuclear energy, environmental ethics, and European society will discuss the continent’s alternately progressive and regressive energy policies.
Key Points

• Pumps/Turbines
 – Chp 14.1-14.2 (today), 14.2-14.3 (Wed.) 14.4-14.5 (Friday)

• Pumps
 – Add energy to fluid (increase pressure, not speed)

• Liquids → pumps

• Gases
 – Fans: Low ΔP, High Flow, < ~ 1 psi
 – Blowers: Med ΔP, Med Flow, < ~ 40 psi
 – Compressors: High ΔP, Low Flow, >~ 40 psi

• Pumps
 – Positive displacement
 – Dynamic
Positive Displacement Pumps

- Displace fluid by moving parts with low clearance
 - Piston/cylinder
 - Turning gears
 - Screws
- Lower flow rates
 - < 1000 gpm
- Self priming
- High pressures (> 500 psi)
 - Need safety devices
- High viscosity fluids
 - Oil, foods
- Pulsating flow, hard to control flow rate
Centrifugal Pumps

- Centripetal forces accelerate fluid and increase pressure.
- Flow enters axially and is accelerated to the outside where pressure rises.
- High flow rates (> 300,000 gpm)
- Large gaps
- Lower pressures (relative) ~100 psi
- Not self priming
- The industry standard for moving gases and liquids.
 - If it’s a pump, it’s probably a centrifugal pump
Centrifugal Pumps
Performance Parameters

- **Brake Horsepower**
 - Shaft work
 - Work supplied to the pump
 - Some is lost \(\rightarrow\) inefficiency

- **Water Horsepower**
 - \(mgH\) is the work imparted to fluid across the pump

- **Efficiency**

- **Inefficiency**
 - Leakage of fluid between spaces
 - Fluid friction in pump
 - Mechanical friction in pump
 - Does not include the motor

\[
H = \left(\frac{P}{\rho g} + \frac{v^2}{2g} + z \right)_{\text{out}} - \left(\frac{P}{\rho g} + \frac{v^2}{2g} + z \right)_{\text{in}}
\]

\[
H = \frac{\Delta P}{\rho g}
\]

\[
\eta = \frac{\dot{W}_{\text{water HP}}}{\dot{W}_{\text{shaft}}} = \frac{\dot{W}_{\text{water HP}}}{bhp} = \frac{\rho gH \dot{V}}{bhp}
\]
Pump Performance

- Key parameters are V and H
- Most pumps are **on** or **off**
- Consider pump to three elevations A, B, C
- Pump head lifts fluid
- Ignore any pipe losses
- **A**: Pump just “throws” fluid, but $H=0$
 - $W = \rho g H V$
- **B**: Start elevating, flow rate drops and head increases
- **C**: At some point flow stops and head is maximum

Note, head increases over the pump, then drops over the load.

Load can be KE or elevation, or loss or pressure.

Could think of this as
Pump Curve Schematic

Diagram showing the pump curve with the following labels:
- \(H \), \(\eta_{\text{pump}} \), and \(\text{bhp} \) curves
- Shutoff head
- BEP

The diagram includes a vertical axis labeled as \(H, \eta_{\text{pump}}, \text{or bhp} \) and a horizontal axis labeled as Free delivery.

Key points on the curve:
- \(H^* \)
- \(\eta_{\text{pump}}^* \)
- \(\text{bhp}^* \)
- \(\dot{V}^* \)
Pump Operation Curves

- Piping system requires a given V and a given H.
 \[H_{req} = \frac{P_2 - P_1}{\rho g} + \frac{v_2^2 - v_1^2}{2g} + (z_2 - z_1) + H_{loss} \]
 - H_{loss} is friction and minor losses, etc.
- Pump has a corresponding V and H.
- These must match, forming the operating point.
 - This may not be the best efficiency.
- Select a pump so that the best efficiency point (BEP) occurs at the operating point.
- Generally oversize the pump a bit
 - higher flow for given H_{req}
 - or Higher H_{avail} for given flow
 - Add a valve after pump \rightarrow raises H_{req} to match H_{avail} for given flow
 - Somewhat wasteful, but offers control.
 - Also may increase efficiency. (But higher efficiency may not compensate for extra work wasted in the valve (see example 14.2))
Find the flow rate and required pumping power for the system to the right. The pumping curve is defined by \(H_p = 200 \text{ m} - v^2 \text{ *s}^2/\text{m} \), with a pump efficiency of 90%.

- \(\rho = 1000 \text{ kg/m}^3 \)
- \(\mu = 7.95 \times 10^{-3} \text{ kg/s} \)
- \(\epsilon = 0.045 \text{ mm} \)
- \(P_1 = 1 \text{ atm} \)
- \(Z_1 = 0 \text{ m} \)
- \(L = 200 \text{ m} \)
- \(D = 0.1 \text{ m} \)
- \(\varepsilon = 0.055 \text{ m/s} \)

Operating Point is at intersection of two lines:
- \(H_{op} = 149.149 \text{ m} \)
- \(v_{op} = 7.131 \text{ m/s} \)

\[
bhp = \frac{\rho g H \dot{V}}{\eta}
\]

\(bhp = 89.35 \text{ kW} \)
Pump Performance Curves

Model 4013
Fl & Cl Series

1160 RPM

Curve no. 2313
Min. Imp. Bio. 6.75"
Size 5 × 4 × 12.75

REQUIRED NPSH

Head in feet

120
100
80
60
40
20
0

Flow in gallons per minute

0 100 200 300 400 500 600 700 800 900 1000

12.75" (241.3mm)
11.25" (229mm)
9.75" (216mm)
8.25" (203mm)
6.75" (111mm)

Curves based on clear water with specific gravity of 1.0

NPSH

Feet

kPa

0 5 10 15 20 25

0 250

Head in meters

Head in kilopascals

30 25 20 15 10 5

15HP (11.2kW)
10HP (7.5kW)
5HP (3.7kW)
3HP (2.2kW)
2HP (1.5kW)
Cavitation

- Pressures inside pumps can decrease locally in some spots (like the low pressure side of a blade)
- Recall flow separation and wakes
- Cavitation causes local boiling, bubble collapse.
 - Think of the pinging you hear when water bubble start to form on the stove.
 - Causes erosion and pitting of blades.
Net Positive Suction Head (NPSH)

\[\text{NPSH} = \left(\frac{P}{\rho g} + \frac{v^2}{2g} \right)_\text{pump inlet} - \frac{P_v}{\rho g} \]

- Think of NPSH as the pressure drop inside the pump.
 - If pump NPSH is 10, then you need \(\left(\frac{P}{\rho g} + \frac{v^2}{2g} \right)_\text{pump inlet} \) at the pump inlet to be more than 10.

- \(\text{NPSH}_{\text{req}} \) is specified for a given pump. Operate ABOVE it.
- \(\text{NPSH}_{\text{req}} \) increases with flow rate (higher flow, more cavitation tendency.
- \(\text{NPSH} \) of the operating system decreases with increasing flow.
 - Higher flow means more pressure drop means lower pressure at the pump inlet, means lower NPSH.

- Locate pumps down low (below tanks and columns. (To maximize P)
- Lower temperature is better (lower \(P_v \))
- As increase T, and/or Flow rate, watch out for cavitation!
NPSH