Chemical Engineering 374

Fluid Mechanics

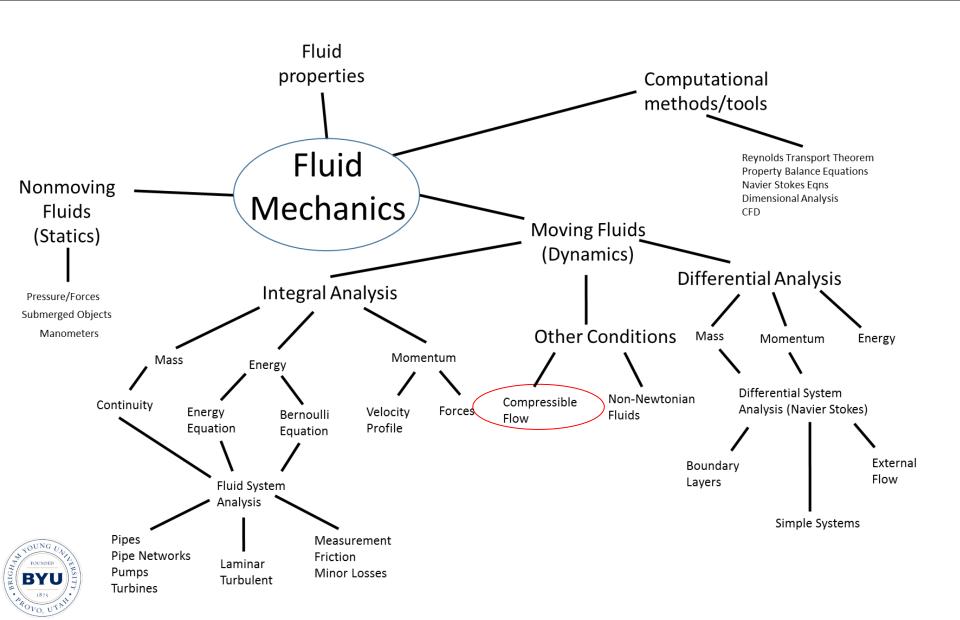
Compressible Flow

Spiritual Thought

John 11:35

Jesus wept.

Fluids Roadmap



Key Points

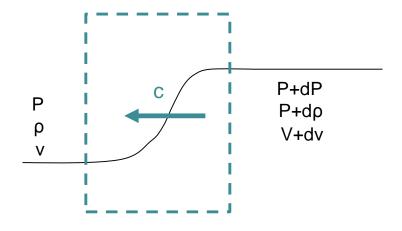
- Characteristics
 - Converts u to kinetic energy
 - T drops, ρ drops
 - v greater than in non-compressible flow
 - -M
- Equations
- Nozzles
- Choked Flow

Compressible Flows

- Previously, p was constant
- Now, p varies
 - High speed flow, large ΔP , ΔT , Δv , etc.
 - Internal energy is converted to kinetic energy
 - T Drops; ρ drops
 - v > v of Bernoulli Eqn. where ρ is constant
 - Mach number, M = v/c; c is *local* value, [c(T)]
 - Compressible for M > 0.3, $\rho/\rho \sim 0.95$,

Sound Speed

Pressure Pulse Analysis



- Mass Balance
- Momentum Balance
- Expression for c
- Error

Mass Balance

$$m_{in} = m_{out} \Rightarrow \rho A V = (\rho + \Delta \rho) A (v + \Delta V)$$

$$\rho V = \rho V + \rho dV + V d\rho + d\rho dV$$

$$\rho dV = -V d\rho$$

• Momentum Balance >> 55, only Pressore Porces

AP- A(P+dP) = m (v+dv) - mV > (m=pAv)

$$\dot{m} = pAv$$
, A cancels
$$-dP = pvdv \Rightarrow pdv = -\frac{dP}{v}$$

$$\frac{dP}{dP} = v^2 = c^2 - 3 c = \sqrt{\frac{dP}{dp}}$$

$$P = \frac{\rho RT}{M}; \frac{dP}{d\rho} \Rightarrow (\frac{\partial P}{\partial \rho})_{T} \text{ or } (\frac{\partial P}{\partial \rho})_{S}$$

$$C = \sqrt{(\frac{\partial P}{\partial \rho})_{S}} = \sqrt{\frac{kRT}{M}}$$

- Sound waves compress
 - No heat transfer
 - Isentropic
 - NOT isothermal

$$c = \sqrt{\frac{\partial P}{\partial \rho}}_{s} = \sqrt{\frac{kRT}{M}}$$

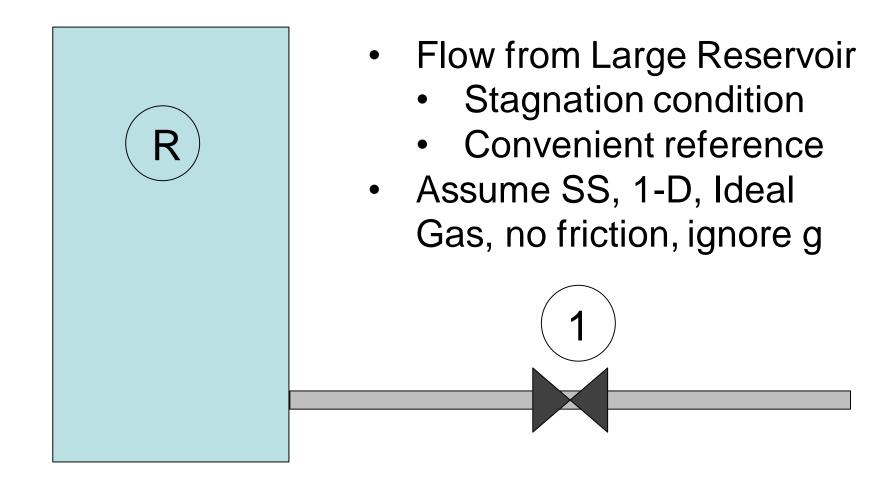
$$k = \frac{C_{p}}{C_{v}}$$

$$= 1.4 \text{ for air}$$

Common Values of c

	c (m/s)	c (mph)
Air @ 298 K	346	774
Air @ 2000 K	896	2000
H ₂ O @ 288 K	1490	3333
Steel @ 188 K	5060	11318

Compressible Flow



Energy Balance

•
$$\dot{Q} + \dot{W}_S = \dot{m} \left(\frac{P}{\rho} + u + \frac{v^2}{2} + \dot{g}Z\right)_R - \dot{m} \left(\frac{P}{\rho} + u + \frac{v^2}{2} + \dot{g}Z\right)_1$$

- $v_1 = 2(h_r h_1) = 2C_p(T_r T_1)$
- Given: $C_p = C_v + \frac{R}{M} \rightarrow k = \frac{C_p}{C_v} \rightarrow C_v = \frac{C_p}{k}$
- $C_p = \frac{Rk}{M(k-1)}$
- $c^2 = \frac{kRT}{M}$
- $\frac{v_1^2}{c_1^2} = M^2 = \frac{2}{k-1} \left(\frac{T_r}{T_1} 1 \right)$
- $\frac{T_r}{T_1} = \frac{M^2(k-1)}{2} + 1$

Ideal Gases: (thermo, next semester...)

•
$$\frac{P_r}{P_1} = \left(\frac{T_r}{T_1}\right)^{k/(k-1)}; \frac{\rho_r}{\rho_1} = \left(\frac{T_r}{T_1}\right)^{1/(k-1)}$$

Thus,

•
$$\frac{P_r}{P_1} = \left(M^2 \frac{k-1}{2} + 1\right)^{k/(k-1)}$$

• $\frac{\rho_r}{\rho_1} = \left(M^2 \frac{k-1}{2} + 1\right)^{1/(k-1)}$

$$\frac{\rho_r}{\rho_1} = \left(M^2 \frac{k-1}{2} + 1\right)^{1/(k-1)}$$

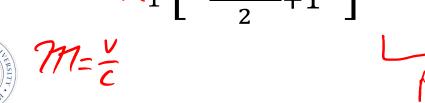
Nozzles

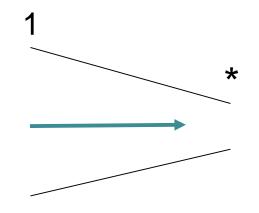
- Mass flow = constant
- As A decreases, v increases
- Eventually v = c at (*)

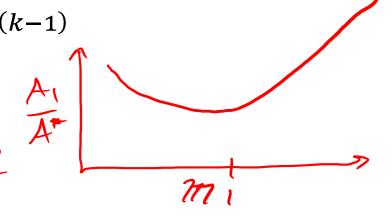
$$-A_1\rho_1V_1 = A^*\rho^*V^*$$

$$-A_1/A^* = \rho^*v^*/\rho_1v_1$$

$$\bullet \ \frac{A_1}{A^*} = \frac{1}{M_1} \left[\frac{M_1^2 \frac{(k-1)}{2} + 1}{\frac{(k-1)}{2} + 1} \right]^{(k+1)} / \frac{2(k-1)}{A^*}$$







- For M<1, as velocity increases, A decreases
- For M > 1, as velocity increases, A increases!
 - Because ρ is decreasing faster than A is increasing \rightarrow v increase to keep $\dot{m} = \rho A v$ constant

Choked Flow

- Flow Changes "communicated" at speed of sound
- i.e. pressure waves travel at c
- If flow speed increases to c, then communication wave can't get back to reservoir
 - Shouting in wind
 - "Communication" doesn't occur
- Flow doesn't increase not matter how low P₂ becomes
 - Choked flow
 - Gas Control valves, orifices, vacuum systems, bike tires
 - Choke point is minimum area in the nozzle/valve
- Flow is constant until ΔP decreases below Critical pressure