Chemical Engineering 374

Fluid Mechanics

Computational Fluid Dynamics (CFD)

"When He answers yes, it is to give us confidence.

When He answers no, it is to prevent error. When he withholds an answer, it is to have us grow through faith in Him, obedience to His commandments, and a willingness to act on truth."

Elder Richard G. Scott

Fluids Roadmap

ABET

- Please fill out the survey
- Located at: <u>https://goo.gl/forms/3S09A5RWynLLRdTx</u>
 1
- 2nd to last quiz (due Friday) will be asking whether or not you filled out ABET questionnaire
- Please also fill out student evaluations for course and instructor!!!

So far...

- Fluid statics (no flow)
- Basic flows: Bernoulli Equation
- Integral Balances: Control volume \rightarrow mass, momentum, energy
- Differential Balances \rightarrow momentum and mass (Navier Stokes)
- All of this was for
 - Simple configurations that we could directly solve analytically
 - 0-D, or 1-D
 - Steady State
 - Incompressible
- 2D or 3D flow in complex geometry, or turbulent, or compressible, are too complex for analytic solution
 - \rightarrow Solve with computers
- Big Subject \rightarrow give a basic introduction

Examples

Key Aspects

- Governing equations
- Mathmatical description
- Grid generation
- Numerical algorithm
- Turbulence modeling

- Convergence
- Stability
- Verification
- Validation

Software

- Commercial
 - Ansys Fluent
 - CD-Adapco—Star CD
- Free
 - OpenFOAM
 - Free CFD
- In-house codes
 - (everyone's got one)
- Many others
 - www.cfd-online.com

8

Nuts and Bolts

- Most of CFD boils down to the following
- Create a spatial grid for the solution
 - Finite difference \rightarrow grid of points
 - Finite volume → grid of connected 0-D control volumes
- Here we will focus on finite difference
 - Approximate the derivatives using the grid points.
 - 1 PDE → many coupled ODE's, one for each point.
 - Solve the system of ODE's at each grid point.

Example 1

Unsteady, fully developed, laminar duct flow, 1-D
 * Start with Navier-Stokes equations – x momentum

$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + \frac{\partial}{\partial y}\frac{\partial u}{\partial y} + \frac{\partial}{\partial z}\frac{\partial u}{\partial z}\right) = -\frac{\partial}{\partial x} + \rho g_x + \mu\left(\frac{\partial}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial}{\partial z^2}\right)$$

$$= \frac{\partial}{\partial t} = \frac{\mu}{\rho}\frac{\partial^2 u}{\partial y^2} - \frac{1}{\rho}\frac{\partial P}{\partial x}$$

$$= \frac{\partial}{\partial t} = \frac{\mu}{\rho}\frac{\partial^2 u}{\partial y^2} - \frac{1}{\rho}\frac{\partial P}{\partial x}$$

$$= \frac{\partial}{\partial t} = \frac{\partial}{\partial t} = \frac{\partial}{\partial t} = \frac{\partial}{\partial t} = \frac{\partial}{\partial t}$$

$$= \frac{\partial}{\partial t} = \frac{\partial}$$

Numerical Derivative

Numerical Equation

•
$$\frac{\partial u}{\partial t} = \frac{\mu}{\rho} \frac{\partial^2 u}{\partial y^2} - \frac{1}{\rho} \frac{\partial P}{\partial x} \approx \frac{\partial u}{\partial t} = \frac{\mu}{\rho} \left(\frac{u_{i+1} - 2u_i + u_{i-1}}{\Delta y^2} \right) - \frac{1}{\rho} \frac{\partial P}{\partial x}$$

- Works only for interior nodes
 - Why?
- For edge nodes, need BC
- $u_1 = 0$
- $u_{N} = 0$
- This transforms PDE (difficult to solve)
 - N-2 ODE's
 - coupled

Solve ODE's

- Can use any ODE solver
 - Example using explicit Euler

$$-\frac{du}{dt} = f(u) \rightarrow \frac{u^{n+1} - u^n}{\Delta t} = f(u^n)$$
$$\rightarrow u^{n+1} = u^n + \Delta t \cdot f(u^n)$$

– Thus:

$$- u^{n+1} = u^n + \Delta t \frac{\mu}{\rho \Delta y^2} \cdot \left[\left(\frac{u_{i+1} - 2u_i + u_{i-1}}{\Delta y^2} \right) - \frac{1}{\rho} \frac{\partial P}{\partial x} \right] \Delta t$$

• Solve in excel or python

2D Problem

- Very similar to 1D, but have more derivatives
- Grid:

Summary

• 1D laminar, unsteady, pipe flow:

•
$$\frac{\partial u}{\partial t} = \frac{\mu}{\rho} \frac{\partial^2 u}{\partial y^2} - \frac{1}{\rho} \frac{\partial P}{\partial x}$$

- Grid of points across pipe diameter
- Approximated 2nd derivative numerically:

•
$$\left(\frac{\partial^2 u}{\partial x^2}\right)_i \cong \frac{u_{i+1} - 2u_i + u_{i-1}}{\Delta x^2}$$

•
$$\frac{\partial u_i}{\partial t} = \frac{\mu}{\rho} \left(\frac{u_{i+1} - 2u_i + u_{i-1}}{\Delta x^2} \right) - \frac{1}{\rho} \frac{\partial P}{\partial x}$$

• BC's:
$$u_1 = 0, u_N = 0$$

Ve

– PDE _____N-2 ODE's (coupled)