Chemical Engineering 374

Fluid Mechanics

Fluid Statics
Key Points

- Statics – No fluid motion
- Pressure characteristics
 - Scalar, all directions, normal to surfaces, units
- Barometric Equation
- Derivation
 - Constant properties
 - Non-constant properties
- Examples
Pressure

• \(P = \frac{F}{A} \)

• Isotropic – same in all directions
 – Force depends on area – next lecture

• Units
 – \(\frac{F}{A} = \frac{N}{m^2} = \text{Pa} = \frac{kg}{m/s^2} \text{ or } \frac{\text{lbf}}{\text{in}^2} = \text{psi} \)

• Absolute

• Gauge
Pressure Derivation

- Start with slice of fluid; FORCE BALANCE!
- x-direction
- y-direction
- how many Forces? 3

\[\Sigma F_x = 0 \Rightarrow \text{some on both sides} \]
\[\Sigma F_y = 0 \Rightarrow \text{weight} \]
\[\text{top} \ p \]
\[\text{bottom} \ p \]
\[0 = -P_1 A + P_2 A - \rho g h A \]

\[P_1 - P_2 = -\rho g h \]
\[\Delta P = P_2 - P_1 = \rho g h \]
What if ρ isn’t constant?

- Same equation, but shrunk to infinitesimal point
- $\Delta P = \pm \rho g h$
- $h = z_1 - z_2$

 $= -\Delta z$
- $\Delta P = - \rho g \Delta z$
- $\lim \Delta z \to 0$
Pressure Intuition
Examples

 Turns out there are aliens at the bottom of the marina trench (10,994 m)! We of course want to go say “hi”, Abyss-style, but need to make sure our sub can get there. What should the design pressure of our sub be?

\[\Delta P = \rho gh = (1000 \, \text{kg/m}^3)(9.8 \, \text{m/s}^2)(10,994 \, \text{m}) \]

\[\Delta P = 1063 \text{ atm} \]
Example 2

• Develop and expression for the pressure in the atmosphere as a function of elevation:
 - $P(z)$
 - Where $P(0) = P_{\text{atm}}$.
 - Assume constant temperature T.
 - Use $\frac{dP}{dz} = -\rho g$

• Strategy
 - Go with what you know:
 - What do you expect to happen?
 - Draw a picture
 - What is an expression or law that relates the physics?
 - What additional information or assumptions are needed.
 - Talk to your neighbor 😊

Hint: Use $\rho = \frac{MP}{RT}$

$$\frac{dP}{dz} = -\rho g \Rightarrow \frac{dP}{dz} = -\frac{MP}{RT}g$$

$$\begin{aligned}
\int_{P_{\text{atm}}}^{P} \frac{dP}{P} &= -\alpha \int_0^z dz \\
\Rightarrow \ln \frac{P}{P_{\text{atm}}} &= -\alpha z \\
\Rightarrow P &= P_{\text{atm}} e^{-\alpha z}
\end{aligned}$$

$$P = P_{\text{atm}} e^{\left(-\frac{Mg}{RT} z\right)}$$
Temperature, Pressure in Atmosphere

<table>
<thead>
<tr>
<th>Ht (ft)</th>
<th>P iso (atm)</th>
<th>P adia</th>
<th>P std</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00e+00</td>
<td>1.000e+00</td>
<td>1.000e+00</td>
<td>1.0000e+00</td>
</tr>
<tr>
<td>1.7268e+03</td>
<td>9.3941e-01</td>
<td>9.3888e-01</td>
<td>9.3906e-01</td>
</tr>
<tr>
<td>3.4537e+03</td>
<td>8.8250e-01</td>
<td>8.8048e-01</td>
<td>8.8117e-01</td>
</tr>
<tr>
<td>5.1805e+03</td>
<td>8.2903e-01</td>
<td>8.2472e-01</td>
<td>8.2620e-01</td>
</tr>
<tr>
<td>6.9074e+03</td>
<td>7.7880e-01</td>
<td>7.7153e-01</td>
<td>7.7405e-01</td>
</tr>
<tr>
<td>8.6342e+03</td>
<td>7.3161e-01</td>
<td>7.2084e-01</td>
<td>7.2459e-01</td>
</tr>
<tr>
<td>1.0361e+04</td>
<td>6.8729e-01</td>
<td>6.7257e-01</td>
<td>6.7773e-01</td>
</tr>
<tr>
<td>1.2088e+04</td>
<td>6.4565e-01</td>
<td>6.2665e-01</td>
<td>6.3336e-01</td>
</tr>
<tr>
<td>1.3815e+04</td>
<td>6.0653e-01</td>
<td>5.8302e-01</td>
<td>5.9137e-01</td>
</tr>
<tr>
<td>1.5542e+04</td>
<td>5.6978e-01</td>
<td>5.4160e-01</td>
<td>5.5166e-01</td>
</tr>
<tr>
<td>1.7268e+04</td>
<td>5.3526e-01</td>
<td>5.0233e-01</td>
<td>5.1414e-01</td>
</tr>
<tr>
<td>1.8995e+04</td>
<td>5.0283e-01</td>
<td>4.6514e-01</td>
<td>4.7872e-01</td>
</tr>
<tr>
<td>2.0722e+04</td>
<td>4.7236e-01</td>
<td>4.2995e-01</td>
<td>4.4530e-01</td>
</tr>
<tr>
<td>2.2449e+04</td>
<td>4.4374e-01</td>
<td>3.9671e-01</td>
<td>4.1380e-01</td>
</tr>
<tr>
<td>2.4176e+04</td>
<td>4.1686e-01</td>
<td>3.6535e-01</td>
<td>3.8413e-01</td>
</tr>
<tr>
<td>2.5903e+04</td>
<td>3.9160e-01</td>
<td>3.3580e-01</td>
<td>3.5621e-01</td>
</tr>
<tr>
<td>2.7629e+04</td>
<td>3.6788e-01</td>
<td>3.0800e-01</td>
<td>3.2995e-01</td>
</tr>
<tr>
<td>2.9356e+04</td>
<td>3.4559e-01</td>
<td>2.8188e-01</td>
<td>3.0529e-01</td>
</tr>
<tr>
<td>3.1083e+04</td>
<td>3.2465e-01</td>
<td>2.5738e-01</td>
<td>2.8214e-01</td>
</tr>
<tr>
<td>3.2810e+04</td>
<td>3.0498e-01</td>
<td>2.3444e-01</td>
<td>2.6044e-01</td>
</tr>
</tbody>
</table>