# Chemical Engineering 412

Introductory Nuclear Engineering

# Lecture 8 Radiation Interactions with Matter Exam Review



# Spiritual Thought

"Most people miss opportunity when it knocks because it comes to the door dressed in overalls and looks like work." Thomas S. Monson (quoting Thomas Edison)



## Roadmap



POUNDED BYU (875 POUNDED FOUNDED FOUNDED

# Objectives

- Be able to calculate probabilities of interaction and radiation field intensities
- Understand both linear interaction coefficients and cross-sections
- Be able to calculate or find  $\mu,\,\sigma,\,and\,\Sigma$
- Be able to read, understand and take values from cross section libraries: plots or tables
- Know how to calculate reaction rates!!!



## Microscopic cross section

- The microscopic cross section
  - Independent of atomic density
  - Based strongly and complexly on particle kinetic energy
  - Play vital roles in nuclear engineering
- Behaviors are empirical!
  - (can be conceptually explained but not always quantitatively predicted by theoretical means)
- Typical unit is barns (1 barn =  $1 \times 10^{-24} \text{ cm}^2$ )
- 1 barn is approximate physical cross section of a uranium nucleus.



# Flux and Reaction Rate

- If  $\sigma$  is probability of one particle interacting with one nucleus
- And Σ is the probability of one particle interacting with many nuclei
- How do we evaluate many particles with many nuclei?
- FLUX- Essentially particle density per time
- Reaction Rate (number of reactions per volume per time)  $\phi_{t} (o_{1} + o_{2}) = 0$   $R_{t} = \sigma_{1} N_{1} \phi_{1} + o_{2} N_{2} \phi_{1}$

$$\widehat{R}_{i} = \emptyset \sum_{i} = \emptyset N \sigma_{i} = \emptyset \sigma_{i} \frac{\rho N_{a}}{A}$$



 What is the power generation in a 1cm3 section of U<sup>235</sup> fuel, assuming a thermal neutron flux of 1x10<sup>22</sup> neutrons/cm<sup>2</sup>-s?

From book: 
$$O_{f} = 5876 N = \frac{\rho Na}{M} M = 2.35 \frac{p}{mol}$$
  
Appendix  $C \qquad \rho = 19.1 \frac{p}{cm^{3}} N = 4.81 \times 10^{22} \frac{a tons}{cm^{3}}$   
 $E_{f} = 200 MeV$   
 $E_{f} = 200 MeV$   
Power  $= E_{f} \cdot p \cdot E_{f} = 1.206 MW$ 



## Mass Interaction Coefficient

- Photons mass interaction coefficient
  - Interaction coefficient (macroscopic) divided by density
  - which depends only weakly on the properties of the medium (for photons)

$$\frac{\mu_i}{\rho} = \frac{\sigma_i N}{\rho} = \frac{N_a}{A} \sigma_i$$

 Homogeneous mixture properties can be determined from

$$\mu_i = \sum_j \mu_{i,j} = \sum_j N_j \sigma_{i,j} \qquad \frac{\mu_i}{\rho} = \sum_j w_j \left(\frac{\mu_i}{\rho}\right)_j$$



#### Cross sections for each interaction

$$\sigma_t = \sigma_e + \sigma_i + \sigma_\gamma + \sigma_f + \dots$$

$$\sigma_{a} = \sigma_{\gamma} + \sigma_{f} + \sigma_{\alpha} + \sigma_{p} + \dots$$

total cross section

absorption cross section

scattering cross section

total cross section

t = total e = elastic scattering i = inelastic scattering  $\gamma$  = radiative capture f = fission  $\alpha$ = alpha (charged) particle p = proton (charged) particle



$$\sigma_t = \sigma_s + \sigma_a$$

 $\sigma_{\rm s} = \sigma_{\rm e} + \sigma_{\rm i}$ 

# **Cross Section Trends**

- Most Isotopes
  - Cross sections rise as neutron energy decreases.
  - Resonance regions with narrow and rapidly varying interactions that eventually are not resolvable
- Light isotopes (A < 25)
- Heavy isotopes (A > 150)
- Intermediate



## AI Total Neutron Cross Section





## AI Total Neutron Cross Section



#### Fe total neutron cross section





#### Fe total neutron cross section



### Lead Total Neutron Cross Section





















#### Cross section over entire range







#### **Fissionable Cross Sections**





# Chemical Engineering 412

Introductory Nuclear Engineering



## **Chapter 1 - Fundamentals**

- Nuclear units
- Elementary particles/particle physics
- Isotopic nomenclature
- Atomic weight/number density
- Chart of nuclides
- Mass energy equivalency



## **Chapter 2 – Quantum Mechanics**

- Special Relativity time, length, mass changes
- Relativistic mass/momentum/energy relations
- Particle-wave duality
- Schrödinger's wave equation
- Heisenberg's uncertainty principle



## Chapter 3 – Nuclear Models

- Nuclear energy states
- Liquid Drop Model
- Nuclear mass equation
- Shell Model
- Nuclear stability
- Binding energy/mass excess
- Modern Nucleus concepts



# **Chapter 4 – Nuclear Energetics**

- Terminology
- Mass defect/BE
- Nuclear reactions
- Conserved quantities for various situations (not all the same!)
- \*\*\*\*Q-Value\*\*\*\* (know how to calculate for ALL reactions)
  - Know how to deal with charge
  - Know how to deal with excited nuclei
  - Know how to deal with electrons/binding energy of electrons



## **Chapter 5 – Nuclear Decay**

- Conservations
- Decay mechanisms distinguishing features, Q values, energy/momentum balances
- \*\*\*Energy Diagrams\*\*\*
- Alpha/Beta particle energy distribution
- Decay Constant
- Half-Life
- Activity



# Chapter 5 – Nuclear Decay (cont)

- Parallel/Series Decay Routes
- Decay Chains
- Solutions to decay chain equations Secular Equilibrium
- Radionuclides in nature
- Carbon 14 dating
- Other isotopic dating methods
- Three component decays



Isobars and most stable masses

# Chapter 6 – Binary Nuclear Reactions

- Definitions
- Types of binary reactions
- Reaction Mechanisms
- Kinematics (scattering example)
- Threshold Energy
- Neutron Reactions
- Neutron Scattering/slowing
- Neutron Energy Spectrums



Lethargy

# Chapter 6 – Binary Nuclear Reactions (cont.)

32

- Neutron capture vs. slowing
- Fission reactions
- Emitted/recoverable fission energy
- Critical energies for fission
- Fertile vs. fissile vs. fissionable
- Fission product distribution
- Prompt vs. delayed neutrons
- Fission steps/timeline



# Chapter 7 – Radiation Interactions with matter

33

- Linear Interaction Coefficient (micro vs. macro)
- Cross section (micro vs. macro)
- Attenuation in Material
- Derivation of material interaction
- Buildup factor
- Mass Attenuation Coefficient
- Energy dependence of cross sections



Cross section Trends

# Chapter 7 – Radiation Interactions with matter (cont.)

34

- Cross Section of mixture
- Total intensity/flux
- Neutron flux
- Time/space/position dependence of flux
- Fluence
- Uncollided flux transmission
- Thermal vs. fast neutrons
- Photon Interactions types, trends, energies, cross sections
- Charged Particle interactions
- Stopping Power (collision vs. radiative)



- The Radionuclide <sup>41</sup>Ar decays by β<sup>-</sup> emission to an excited level of <sup>41</sup>K that is 1.293 MeV above the ground state. What is the maximum kinetic energy of the emitted β<sup>-</sup> particle?
- What makes this the maximum energy?



# Solution

# Q Equation $Q_{\beta_{-}} = \{M(_{18}^{41}Ar) - [M(_{19}^{41}K) + E^*/c^2]\}c^2$ [40.9645008 - 40.9618259]\*931.5 - 1.293 MeV =1.199 MeV

 B) Because an antineutrino is also released, which carries away some energy – this maximum is when the antineutrino has zero



Assume a fuel rod has a diameter of 1 cm and a length of 5 m. Assuming an enrichment of 5%  $^{235}$ U and a thermal flux of 2x10<sup>13</sup> neutrons, what is the reaction rate in the fuel rod for:



- What is the probability of producing <sup>91</sup>Br in a fission reaction?
- Use fission product mass distribution chart:
- ~8.5%



- What is the amount of thermal neutrons that are absorbed in water per cm<sup>3</sup> over 1 hour in a fission reactor if the thermal flux is  $2.2*10^{16}$  neutrons/cm<sup>2</sup>/s? ( $\Sigma_a = 0.0197$  cm<sup>-1</sup>)
- 1.56\*10<sup>18</sup> absorptions per cm<sup>3</sup>

 $\hat{R} = \emptyset, \Sigma, \hat{D}, \Sigma_{a}$ 





