The Fluxes and the Equations of Change

- §B.1 Newton's law of viscosity
- §B.2 Fourier's law of heat conduction
- §B.3 Fick's (first) law of binary diffusion
- §B.4 The equation of continuity
- §B.5 The equation of motion in terms of τ
- §B.6 The equation of motion for a Newtonian fluid with constant ρ and μ
- §B.7 The dissipation function Φ_v for Newtonian fluids
- §B.8 The equation of energy in terms of q
- §B.9 The equation of energy for pure Newtonian fluids with constant ρ and k
- §B.10 The equation of continuity for species α in terms of j_{α}
- §B.11 The equation of continuity for species A in terms of ω_A for constant $\rho \mathfrak{D}_{AB}$

§B.1 NEWTON'S LAW OF VISCOSITY

$$[\boldsymbol{\tau} = -\mu(\nabla \mathbf{v} + (\nabla \mathbf{v})^{\dagger}) + (\frac{2}{3}\mu - \kappa)(\nabla \cdot \mathbf{v})\boldsymbol{\delta}]$$

Cartesian coordinates (x, y, z):

$$\tau_{xx} = -\mu \left[2 \frac{\partial v_x}{\partial x} \right] + \left(\frac{2}{3}\mu - \kappa \right) (\nabla \cdot \mathbf{v})$$
 (B.1-1)^a

$$\tau_{yy} = -\mu \left[2 \frac{\partial v_y}{\partial y} \right] + \left(\frac{2}{3}\mu - \kappa \right) (\nabla \cdot \mathbf{v})$$
 (B.1-2)^a

$$\tau_{zz} = -\mu \left[2 \frac{\partial v_z}{\partial z} \right] + \left(\frac{2}{3}\mu - \kappa \right) (\nabla \cdot \mathbf{v})$$
 (B.1-3)^a

$$\tau_{xy} = \tau_{yx} = -\mu \left[\frac{\partial v_y}{\partial x} + \frac{\partial v_x}{\partial y} \right]$$
 (B.1-4)

$$\tau_{yz} = \tau_{zy} = -\mu \left[\frac{\partial v_z}{\partial y} + \frac{\partial v_y}{\partial z} \right]$$
(B.1-5)

$$\tau_{zx} = \tau_{xz} = -\mu \left[\frac{\partial v_x}{\partial z} + \frac{\partial v_z}{\partial x} \right]$$
(B.1-6)

in which

$$(\nabla \cdot \mathbf{v}) = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$
 (B.1-7)

^a When the fluid is assumed to have constant density, the term containing $(\nabla \cdot \mathbf{v})$ may be omitted. For monatomic gases at low density, the dilatational viscosity κ is zero.

§B.1 NEWTON'S LAW OF VISCOSITY (continued)

Cylindrical coordinates (r, θ, z) :

$$\tau_{rr} = -\mu \left[2 \frac{\partial v_r}{\partial r} \right] + \left(\frac{2}{3} \mu - \kappa \right) (\nabla \cdot \mathbf{v})$$
 (B.1-8)^a

$$\tau_{\theta\theta} = -\mu \left[2 \left(\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{r}}{r} \right) \right] + \left(\frac{2}{3} \mu - \kappa \right) (\nabla \cdot \mathbf{v})$$
 (B.1-9)^a

$$\tau_{zz} = -\mu \left[2 \frac{\partial v_z}{\partial z} \right] + \left(\frac{2}{3}\mu - \kappa \right) (\nabla \cdot \mathbf{v})$$
 (B.1-10)^a

$$\tau_{r\theta} = \tau_{\theta r} = -\mu \left[r \frac{\partial}{\partial r} \left(\frac{v_{\theta}}{r} \right) + \frac{1}{r} \frac{\partial v_{r}}{\partial \theta} \right]$$
 (B.1-11)

$$\tau_{\theta z} = \tau_{z\theta} = -\mu \left[\frac{1}{r} \frac{\partial v_z}{\partial \theta} + \frac{\partial v_{\theta}}{\partial z} \right]$$
 (B.1-12)

$$\tau_{zr} = \tau_{rz} = -\mu \left[\frac{\partial v_r}{\partial z} + \frac{\partial v_z}{\partial r} \right]$$
 (B.1-13)

in which

$$(\nabla \cdot \mathbf{v}) = \frac{1}{r} \frac{\partial}{\partial r} (r v_r) + \frac{1}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{\partial v_z}{\partial z}$$
(B.1-14)

Spherical coordinates (r, θ, ϕ) :

$$\tau_{rr} = -\mu \left[2 \frac{\partial v_r}{\partial r} \right] + \left(\frac{2}{3} \mu - \kappa \right) (\nabla \cdot \mathbf{v})$$
(B.1-15)^a

$$\tau_{\theta\theta} = -\mu \left[2 \left(\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{r}}{r} \right) \right] + \left(\frac{2}{3} \mu - \kappa \right) (\nabla \cdot \mathbf{v})$$
 (B.1-16)^a

$$\tau_{\phi\phi} = -\mu \left[2 \left(\frac{1}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi} + \frac{v_r + v_{\theta} \cot \theta}{r} \right) \right] + (\frac{2}{3}\mu - \kappa)(\nabla \cdot \mathbf{v})$$
 (B.1-17)^a

$$\tau_{r\theta} = \tau_{\theta r} = -\mu \left[r \frac{\partial}{\partial r} \left(\frac{v_{\theta}}{r} \right) + \frac{1}{r} \frac{\partial v_{r}}{\partial \theta} \right]$$
 (B.1-18)

$$\tau_{\theta\phi} = \tau_{\phi\theta} = -\mu \left[\frac{\sin \theta}{r} \frac{\partial}{\partial \theta} \left(\frac{v_{\phi}}{\sin \theta} \right) + \frac{1}{r \sin \theta} \frac{\partial v_{\theta}}{\partial \phi} \right]$$
 (B.1-19)

$$\tau_{\phi r} = \tau_{r\phi} = -\mu \left[\frac{1}{r \sin \theta} \frac{\partial v_r}{\partial \phi} + r \frac{\partial}{\partial r} \left(\frac{v_\phi}{r} \right) \right]$$
 (B.1-20)

in which

$$(\nabla \cdot \mathbf{v}) = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (v_\theta \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi}$$
(B.1-21)

^a When the fluid is assumed to have constant density, the term containing $(\nabla \cdot \mathbf{v})$ may be omitted. For monatomic gases at low density, the dilatational viscosity κ is zero.

^a When the fluid is assumed to have constant density, the term containing $(\nabla \cdot \mathbf{v})$ may be omitted. For monatomic gases at low density, the dilatational viscosity κ is zero.

§B.5 THE EQUATION OF MOTION IN TERMS OF τ

Dt = 3+ 1.7

$$[\rho D\mathbf{v}/Dt = -\nabla p - [\nabla \cdot \boldsymbol{\tau}] + \rho \mathbf{g}]$$

Cartesian coordinates (x, y, z):

$$\rho \left(\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} \right) = -\frac{\partial p}{\partial x} - \left[\frac{\partial}{\partial x} \tau_{xx} + \frac{\partial}{\partial y} \tau_{yx} + \frac{\partial}{\partial z} \tau_{zx} \right] + \rho g_x \quad (B.5-1)$$

$$\rho \left(\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} \right) = -\frac{\partial p}{\partial y} - \left[\frac{\partial}{\partial x} \tau_{xy} + \frac{\partial}{\partial y} \tau_{yy} + \frac{\partial}{\partial z} \tau_{zy} \right] + \rho g_y \quad (B.5-2)$$

$$\rho \left(\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} \right) = -\frac{\partial p}{\partial z} - \left[\frac{\partial}{\partial x} \tau_{xz} + \frac{\partial}{\partial y} \tau_{yz} + \frac{\partial}{\partial z} \tau_{zz} \right] + \rho g_z \quad (B.5-3)$$

Cylindrical coordinates (r, θ, z) :

$$\rho \left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + v_z \frac{\partial v_r}{\partial z} - \frac{v_\theta^2}{r} \right) = -\frac{\partial p}{\partial r} - \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \tau_{rr} \right) + \frac{1}{r} \frac{\partial}{\partial \theta} \tau_{\theta r} + \frac{\partial}{\partial z} \tau_{zr} - \frac{\tau_{\theta \theta}}{r} \right] + \rho g_r$$
(B.5-4)

$$\rho \left(\frac{\partial v_{\theta}}{\partial t} + v_{r} \frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta} + v_{z} \frac{\partial v_{\theta}}{\partial z} + \frac{v_{r}v_{\theta}}{r} \right) = -\frac{1}{r} \frac{\partial p}{\partial \theta} - \left[\frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \tau_{r\theta} \right) + \frac{1}{r} \frac{\partial}{\partial \theta} \tau_{\theta\theta} + \frac{\partial}{\partial z} \tau_{z\theta} + \frac{\tau_{\theta r} - \tau_{r\theta}}{r} \right] + \rho g_{\theta}$$
(B.5-5)

$$\rho \left(\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z} \right) = -\frac{\partial p}{\partial z} - \left[\frac{1}{r} \frac{\partial}{\partial r} (r \tau_{rz}) + \frac{1}{r} \frac{\partial}{\partial \theta} \tau_{\theta z} + \frac{\partial}{\partial z} \tau_{zz} \right] + \rho g_z$$
(B.5-6)

Spherical coordinates (r, θ, ϕ) :

$$\rho \left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial v_r}{\partial \phi} - \frac{v_\theta^2 + v_\phi^2}{r} \right) = -\frac{\partial p}{\partial r}$$

$$- \left[\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \tau_{rr}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\tau_{\theta r} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \tau_{\phi r} - \frac{\tau_{\theta \theta} + \tau_{\phi \phi}}{r} \right] + \rho g_r$$
(B.5-7)

$$\rho \left(\frac{\partial v_{\theta}}{\partial t} + v_{r} \frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{\phi}}{r \sin \theta} \frac{\partial v_{\theta}}{\partial \phi} + \frac{v_{r}v_{\theta} - v_{\phi}^{2} \cot \theta}{r} \right) = -\frac{1}{r} \frac{\partial p}{\partial \theta}$$

$$- \left[\frac{1}{r^{3}} \frac{\partial}{\partial r} (r^{3}\tau_{r\theta}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\tau_{\theta\theta} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \tau_{\phi\theta} + \frac{(\tau_{\theta r} - \tau_{r\theta}) - \tau_{\phi\phi} \cot \theta}{r} \right) + \rho g_{\theta}$$
(B.5-8)

$$\rho \left(\frac{\partial v_{\phi}}{\partial t} + v_{r} \frac{\partial v_{\phi}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\phi}}{\partial \theta} + \frac{v_{\phi}}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi} + \frac{v_{\phi}v_{r} + v_{\theta}v_{\phi} \cot \theta}{r} \right) = -\frac{1}{r \sin \theta} \frac{\partial p}{\partial \phi}$$

$$- \left[\frac{1}{r^{3}} \frac{\partial}{\partial r} (r^{3}\tau_{r\phi}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\tau_{\theta\phi} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \tau_{\phi\phi} + \frac{(\tau_{\phi r} - \tau_{r\phi}) + \tau_{\phi\theta} \cot \theta}{r} \right] + \rho g_{\phi}$$
(B.5-9)

$$\frac{\partial}{\partial t}(\rho \vec{v}) = -\nabla \cdot \rho \vec{v} \vec{v} - \nabla \rho - \nabla \cdot \vec{z} + \rho \vec{q}$$

$$\frac{\partial}{\partial t}(\rho \vec{v}) = -\frac{\partial}{\partial x}(\rho \vec{v} \vec{v}) - \frac{\partial}{\partial x}\rho - \frac{\partial}{\partial x}\vec{v}_{1} + \rho \vec{q}_{1}$$

$$\Rightarrow \frac{\partial}{\partial t}(\rho \vec{v}) = -\frac{\partial}{\partial x}(\rho \vec{v} \vec{v}) - \frac{\partial}{\partial x}(\rho \vec{v} \vec{v}) - \frac{\partial}{\partial x}\vec{v}_{2} + \rho \vec{q}_{1}$$

$$-\frac{\partial}{\partial x}(\rho \vec{v}) = -\frac{\partial}{\partial x}(\rho \vec{v} \vec{v}) - \frac{\partial}{\partial x}(\rho \vec{v} \vec{v}) - \frac{\partial}{\partial x}(\rho \vec{v} \vec{v}) - \frac{\partial}{\partial x}\rho - \frac{\partial}{\partial x}\vec{v}_{2} - \frac{\partial}{\partial x}\vec{v}_{3}$$

$$-\frac{\partial}{\partial x}\vec{v}_{2} + \rho \vec{q}_{2}$$

$$-\frac{\partial}{\partial x}\vec{v}_{3} + \rho \vec{q}_{3}$$

$$-\frac{\partial}{\partial x}\vec{v}_{3} + \rho \vec{q}_{3}$$

^a These equations have been written without making the assumption that τ is symmetric. This means, for example, that when the usual assumption is made that the stress tensor is symmetric, τ_{xy} and τ_{yx} may be interchanged.

^b These equations have been written without making the assumption that τ is symmetric. This means, for example, that when the usual assumption is made that the stress tensor is symmetric, $\tau_{\tau\theta} - \tau_{\theta\tau} = 0$.

^c These equations have been written without making the assumption that τ is symmetric. This means, for example, that when the usual assumption is made that the stress tensor is symmetric, $\tau_{r\theta} - \tau_{\theta r} = 0$.

§B.6 EQUATION OF MOTION FOR A NEWTONIAN FLUID WITH CONSTANT ρ AND μ

$$[\rho D\mathbf{v}/Dt = -\nabla p + \mu \nabla^2 \mathbf{v} + \rho \mathbf{g}]$$

Cartesian coordinates (x, y, z):

$$\rho \left(\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} \right) = -\frac{\partial p}{\partial x} + \mu \left[\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2} \right] + \rho g_x \qquad (B.6-1)$$

$$\rho \left(\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} \right) = -\frac{\partial p}{\partial y} + \mu \left[\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial^2 v_y}{\partial z^2} \right] + \rho g_y \qquad (B.6-2)$$

$$\rho \left(\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} \right) = -\frac{\partial p}{\partial z} + \mu \left[\frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2} \right] + \rho g_z \qquad (B.6-3)$$

Cylindrical coordinates (r, θ, z) :

$$\rho\left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + v_z \frac{\partial v_r}{\partial z} - \frac{v_\theta^2}{r}\right) = -\frac{\partial p}{\partial r} + \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (rv_r)\right) + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} + \frac{\partial^2 v_r}{\partial z^2} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta}\right] + \rho g_r$$
(B.6-4)

$$\rho \left(\frac{\partial v_{\theta}}{\partial t} + v_{r} \frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta} + v_{z} \frac{\partial v_{\theta}}{\partial z} + \frac{v_{r}v_{\theta}}{r} \right) = -\frac{1}{r} \frac{\partial p}{\partial \theta} + \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (rv_{\theta}) \right) + \frac{1}{r^{2}} \frac{\partial^{2} v_{\theta}}{\partial \theta^{2}} + \frac{\partial^{2} v_{\theta}}{\partial z^{2}} + \frac{2}{r^{2}} \frac{\partial v_{r}}{\partial \theta} \right] + \rho g_{\theta}$$
(B.6-5)

$$\rho \left(\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z} \right) = -\frac{\partial p}{\partial z} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_z}{\partial z^2} \right] + \rho g_z$$
(B.6-6)

Spherical coordinates (r, θ, ϕ)

$$\rho \left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial v_r}{\partial \phi} - \frac{v_\theta^2 + v_\phi^2}{r} \right) = -\frac{\partial p}{\partial r}$$

$$+ \mu \left[\frac{1}{r^2} \frac{\partial^2}{\partial r^2} (r^2 v_r) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial v_r}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 v_r}{\partial \phi^2} \right] + \rho g_r$$

$$(B.6-7)^a$$

$$\rho \left(\frac{\partial v_{\theta}}{\partial t} + v_{r} \frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{\phi}}{r \sin \theta} \frac{\partial v_{\theta}}{\partial \phi} + \frac{v_{r}v_{\theta} - v_{\phi}^{2} \cot \theta}{r} \right) = -\frac{1}{r} \frac{\partial p}{\partial \theta}$$

$$+ \mu \left[\frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial v_{\theta}}{\partial r} \right) + \frac{1}{r^{2}} \frac{\partial}{\partial \theta} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(v_{\theta} \sin \theta \right) \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} v_{\theta}}{\partial \phi^{2}} + \frac{2}{r^{2}} \frac{\partial v_{r}}{\partial \theta} - \frac{2 \cot \theta}{r^{2} \sin \theta} \frac{\partial v_{\phi}}{\partial \phi} \right] + \rho g_{\theta}$$
(B.6-8)

$$\rho \left(\frac{\partial v_{\phi}}{\partial t} + v_{r} \frac{\partial v_{\phi}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\phi}}{\partial \theta} + \frac{v_{\phi}}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi} + \frac{v_{\phi}v_{r} + v_{\theta}v_{\phi} \cot \theta}{r} \right) = -\frac{1}{r \sin \theta} \frac{\partial p}{\partial \phi}$$

$$+ \mu \left[\frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial v_{\phi}}{\partial r} \right) + \frac{1}{r^{2}} \frac{\partial}{\partial \theta} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(v_{\phi} \sin \theta \right) \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} v_{\phi}}{\partial \phi^{2}} + \frac{2}{r^{2} \sin \theta} \frac{\partial v_{r}}{\partial \phi} + \frac{2 \cot \theta}{r^{2} \sin \theta} \frac{\partial v_{\theta}}{\partial \phi} \right] + \rho g_{\theta} \quad (B.6-9)$$

^a The quantity in the brackets in Eq. B.6-7 is *not* what one would expect from Eq. (M) for $[\nabla \cdot \nabla \mathbf{v}]$ in Table A.7-3, because we have added to Eq. (M) the expression for $(2/r)(\nabla \cdot \mathbf{v})$, which is zero for fluids with constant ρ . This gives a much simpler equation.

§B.3 FICK'S (FIRST) LAW OF BINARY DIFFUSION^a

ſi.	=	$- ho\mathfrak{D}_{AB} abla\omega_{A}$	l
LJA	_	$-\rho\omega_{AB}$ \vee ω_{A}	l

Cartesian coordinates (x, y, z):

$$j_{Ax} = -\rho \mathfrak{D}_{AB} \frac{\partial \omega_A}{\partial x} \tag{B.3-1}$$

$$j_{Ay} = -\rho \mathfrak{D}_{AB} \frac{\partial \omega_A}{\partial y} \tag{B.3-2}$$

$$j_{Az} = -\rho \mathfrak{D}_{AB} \frac{\partial \omega_A}{\partial z} \tag{B.3-3}$$

Cylindrical coordinates (r, θ, z) :

$$j_{Ar} = -\rho \mathfrak{D}_{AB} \frac{\partial \omega_A}{\partial r} \tag{B.3-4}$$

$$j_{A\theta} = -\rho \mathfrak{D}_{AB} \frac{1}{r} \frac{\partial \omega_A}{\partial \theta}$$
 (B.3-5)

$$j_{Az} = -\rho \mathcal{D}_{AB} \frac{\partial \omega_A}{\partial z} \tag{B.3-6}$$

Spherical coordinates (r, θ, ϕ) :

$$j_{Ar} = -\rho \mathfrak{D}_{AB} \frac{\partial \omega_A}{\partial r} \tag{B.3-7}$$

$$j_{A\theta} = -\rho \mathfrak{D}_{AB} \frac{1}{r} \frac{\partial \omega_A}{\partial \theta} \tag{B.3-8}$$

$$j_{A\phi} = -\rho \mathfrak{D}_{AB} \frac{1}{r \sin \theta} \frac{\partial \omega_A}{\partial \phi}$$
 (B.3-9)

§B.4 THE EQUATION OF CONTINUITY^a

$$[\partial \rho / \partial t + (\nabla \cdot \rho \mathbf{v}) = 0]$$

Cartesian coordinates (x, y, z):

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho v_x) + \frac{\partial}{\partial y} (\rho v_y) + \frac{\partial}{\partial z} (\rho v_z) = 0$$
(B.4-1)

Cylindrical coordinates (r, θ, z) :

$$\frac{\partial \rho}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (\rho r v_r) + \frac{1}{r} \frac{\partial}{\partial \theta} (\rho v_\theta) + \frac{\partial}{\partial z} (\rho v_z) = 0$$
(B.4-2)

Spherical coordinates (r, θ, ϕ) :

$$\frac{\partial \rho}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} (\rho r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\rho v_\theta \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} (\rho v_\phi) = 0$$
 (B.4-3)

^a To get the molar fluxes with respect to the molar average velocity, replace j_A , ρ , and ω_A by J_A^* , c, and x_A .

^a When the fluid is assumed to have constant mass density ρ , the equation simplifies to $(\nabla \cdot \mathbf{v}) = 0$.