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Appendix B

The Fluxes and the Equations

of Change

§B.1 Newton's law of viscosity

§B.2  Fourier’s law of heat conduction

§B.3  Fick’s (first) law of binary diffusion

§B.4 The equation of continuity

§B.5 The equation of motion in terms of 7

§B.6 The equation of motion for a Newtoﬁian fluid with constant p and u
§B.7 The dissipation function ®, for Newtonian fluids

§B.8 The equation of energy in terms of q

§B.9 The equation of energy for pure Newtonian fluids with constant p and k
§B.10 The equation of continuity for species « in terms of j,

§B.11 The equation of continuity for species A in terms of w, for constant p% 4

§B.1 NEWTON’S LAW OF VISCOSITY

[t = —u(Vv + (V)1 + Gu — ©)(V - v)3]

Cartesian coordinates (x, , z):

i p i
o il % + Cu— 1 V) (B.1-1)°
il (9’01:
Ty = M 2 Wj + (%l-l» —k)(V-v) (B.1-2)"
i [?vz_
T =~ 22| + Gu — KV - V) (B.1-3)"
_avl &v;
Toy = Tyx = — M (9_.}/ W (B1-4)
‘6?)2 §vl—
Ty = Ty = M ay _&_Zl (B.1-5)
(90, a0, ]
Tox = Tz = _/J“_ 9z E_ (B.1-6)
in which
17?)1. 37)!/ aUz

* When the fluid is assumed to have constant density, the term containing (V - v) may be omitted. For
monatomic gases at low density, the dilatational viscosity « is zero.
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844 Appendix B  Fluxes and the Equations of Change

§B.1 NEWTON’S LAW OF VISCOSITY (continued)

Cylindrical coordinates (r, 0, Z):

Ty = —M Z%W +CGu— (Vv
Too = — 2(1 v )] + G~V V)
L

+Gp — KV V)

1()7}
Ty 96

l dv(,
"
L), (9 0v
Tar Tz = 9z
in which
19 1dvy | v,
M= i rn e

(B.1-8)

(B.1-9)"

(B.1-10)

(B.1-11)

(B.1-12)

(B.1-13)

(B.1-14)

a When the fluid is assumed to have constant density, the term containing (V * v) may be omitted. For

monatomic gases at low density, the dilatational viscosity « is zero.

Spherical coordinates (1, 0, ¢):

do,
i ;p,[z Tﬂ + Gu— 1)V V)

d
Too = m[z(}% + )] + Cu— KV V)

1 Jdvy v, + v, cotd
- — +
’u[2<r sin 6 do r

S 19%
i “[ ar< >+raa]
JLILAAS sin 0 9 [ Ys i 1 dy
00 = To0 = "M T 99 \'sin 6) ' 7 sin 0 d¢

SR [ AL Y
Tor = Trp = — M r sin 0 (7¢ or\r

1
2

Il

ﬂ +CGu— Vv

K |
3
|

in which

1 dvg,

LT 7 sin 0 0

ai(r v,) + (un sin 6) +

7 sin 0 90

(B.1-15)"

(B.1-16)"

(B.1-17)"

(B.1-18)

(B.1-19)

(B.1-20)

(B.1-21)

2 When the fluid is assumed to have constant density, the term containing (V * v) may be omitted. For
monatomic gases at low density, the dilatational viscosity « is zero.
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§B.5 The Equation of Motion in Terms of v 847

§B.5 THE EQUATION OF MOTION IN TERMS OF 7
[pDv/Dt = =Vp — [V - 7] + pg]

Cartesian coordinates (x, v, z):"

du, dv, dv, v, ap 3 3 J

Ao, iy, =T [ L 0 0, e (BS-
p( gt Tl Yy Ty o |ox T T gy Tt gy Ta| Y& (B

dv, Jv, Jv, dv, ap |a 9 P

—_— — — +  — = —— — —_— T — —+ O~
A ( ot Ty Ty YUy ay  |axT gy Twt gp | 8y (B52)

av, v, v, v, |4 J J
— v, —tu,—|=———| %, . 5-
p< o Ty Ty 7 az> 7z |ox Toz + ay +o 7| tpg. (B5-3)

* These equations have been written without making the assumption that 7 is symmetric. This means, for

example, that when the usual assumption is made that the stress tensor is symmetric, 7, and 7,, may be
interchanged.

Cylindrical coordinates (r, 0, z):*

()U,. (90,. Uy ‘901‘ (701' '(75 &p l d 19 d Ton

— 4+ v, — —_ — = — = | == i - — —T, — — i 5-
P( w Tyt thgy—3 ar |70ty 20 Tr T 37— 7 | + 08 (B.5-4)

dv, dvy | Uy JUy Jdvy | VU, 19p 109 ,, 19 J Tor — Tro

gty U —Zp o = |2 O ! i A i O Y 5-
P( 5 Pl e b - rae | 2ar (1) + 5 Tt et = + pgo (B.5-5)

dv, dv, v, dvu, dvu, ap 19 19 J

2t o, —+ Lty == [ L pr )+ 22 2 5-

”< N T TR az> a2 |Tar U T 7 ag e T g a| T 8 e

® These equations have been written without making the assumption that 7 is symmetric. This means, for example, that when the usual
assumption is made that the stress tensor is symmetric, 7,, — 7, = 0.

Spherical coordinates (r, 0, ¢):©

9, 9v, Uy 0, vy dv, iU\ dp
Pt "% r TT 38 T v g d r o
1 _li 2 1.4 " 1 9 TeT Ty
|2 ar rr) + - sin g 79 Tor S0 0) + ——— Gngag ™ T | T8 (B.5-7)
vy , 90 , 90 Yo 30y Ul vj cot 6\ 19p
P\ot "% or T30 " 7 sin 6 99 r T Trae
19,5 1 9 ) 1 9 (19, — Typ) — T4y cOt 0
|2 + ——Z o= - 5-
| 73 or (rro) r sin 0 90 g B ) % rsin 0 9 X r P& (B.5-8)
du, dvy v, dUy Uy dUy U4, + VU, cot 0 1 ap
P oy e v = e
at Jt r g0 rsin 6 dp r r sin 6 d¢
19,5 1 J | 1 J (Tgr — Trp) + 49 cOt 6
= [PE (r1,4) + Py (744 sin ) + 7 sin 6 96 Tpp + 7 + P8y (B.5-9)

¢ These equations have been written without making the assumption that 7 is symmetric. This means, for example, that when the usual
assumption is made that the stress tensor is symmetric, 7,, — 7, = 0.

D p5) T P - vz s F7




848 AppendixB  Fluxes and the Equations of Change

§B.6 EQUATION OF MOTION FOR A NEWTONIAN FLUID
WITH CONSTANT p AND

[pDv/Dt = —Vp + puV?v + pgl

Cartesian coordinates (x, y, z):

dv, N v, i v, dv,\ _ dp A [ 520, I Fv, v, + B6
Aot T Ty TR )T T M e T el ” B g
v, v, v, v, ap [d%, ™, d%,
I, i =% b A I ST AN+ Je TR 5. 1R ) e = /|
Par Tt % dy 27 dy 'u_o"x2 P 9z Pgy  {BoY
dv, Jv, Jv, Ju, dp [ 0%, %, o,
=2 O 2z =" + %
( Pt YUy Ty 9z " Koz T ap a2 ps.  (B.6-3)
Cylindrical coordinates (r, 6, z):
v, Jgv, v, Jv, v, v ap 914 1%, %, 2 dv,
i R PN JE W v ST Wi e ] PR AP NP Ok B Rl SR Bl 6-
p( R T Rl ol g\ 7o ) T 290 | T P8 (B.6-4)

dv, vy Vg IV, vy 0,0, 19, 9(1a 1 3%, dv, 2 v,
| o /Nl g el TRl o =" T i1 AN [ 2L A 2 e b e T 62
<3t+v’ar+ra9+vz&z r 7’,?0+/'L<9r rﬁr(rv”) 290 922 24 * P& (B:6-2)
dv, dv, v, dv, dv,\ _ dp 19 ( 9o, 1 0%, d*,
p(at et ras T ) - m Mra\ar ) e a2 Pe (B.6-6)
Spherical coordinates (r, 0, ¢):
v, 90, 0y 30, vy v, Ut v3\_ dp
Plat "% ar T T 90 " 7 sin 09 N
1.8 ;o 1 af . .9 1 &y
+pl=L o)+ ——Z 0—")+———2|+ B.6-7)"
“er ar? e 2 sin 6 960 (sm a6 2 sin? 0 d¢> Per : ’
g, I 00 Vs 0 VU TUp OLE)  1dp
P\or "% or T 7 90 " ¥ sin 0 9o r 90
1o Y 1 8( 1 4. . 1 v, 29Y  2cot§ 9%
4 gl (2200} 1 @ kA g L PR et SO E B.6-8
2 ar (r ar> o ﬁO(sin g g U S0 0)) 2 sin?09¢° 1200 Plengdp| C2 B.59)
dv,, i dvy, L o vy dv, VU, + U0, coOt 6 1 dp
P\ot T rar r g0 rsin 6 do r " rsin 09¢
B 2,
19 (2%, 19( 1 4 | 1 97 2 9v, 2 cot § 9
+al w2y Tl p ] - ¢ + — L —8) 4 B.6-9
ars W( W) r? !79<Sm 5 36 % " 0)> r2sin%0 9¢*> 1’ sin 699  r? sin 6 9P & (BE2

3 The quantity in the brackets in Eq. B.6-7 is not what one would expect from Eq. (M) for [V - Vv] in Table A.7-3, because we have added
to Eq. (M) the expression for (2/r)(V - v), which is zero for fluids with constant p. This gives a much simpler equation.
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I

§B.3 FICK'’S (FIRST) LAW OF BINARY DIFFUSION”
‘ a= —pD 45V w,l

Cartesian coordinates (x, Y, z):

dw,

1 dw 4

jas = —PDap T (B.3-9)

jax = —pDag ox (B.3-1)
ll jay= —PDap % (B.3-2)
1 jaz = —PDap % (B.3-3)
’ Cylindrical coordinates (r, 0, z):
i jar = —pD AB% (B.3-4)
jao = —PDap %% (B.3-5)
jaz = —PDag % (B.3-6)
i Spherical coordinates (r, 0, ¢):
i jar = —PpDag % (B.3-7)
l jan = —PD s ‘% (B.3-8)
4
|

2 To get the molar fluxes with respect to the molar average velocity, replace j 4, p, and w, by J%, ¢, and x,4.

§B.4 THE EQUATION OF CONTINUITY"
[op/at + (V- pv) = 0]

Cartesian coordinates (x, y, z):

ap 9 d d o
=7 T35 (00 + 3y (pv,) + -~ (pv2) =0 (B4-1)

Cylindrical coordinates (r, 0, z):

ap [ 14 14 d o 2
ot + 5 oy (prv,) + 30 (pvg) + 2 (pv) =0 (B.4-2)
Spherical coordinates (v, 0, ¢):
| ap 1 9 5 1 J ! 1 J
—+=Z + 2 Z = 4-3
'f ot *Zar o i g e A B e ad oy =10 B4

! 3 When the fluid is assumed to have constant mass density p, the equation simplifies to (V- v) = 0.




