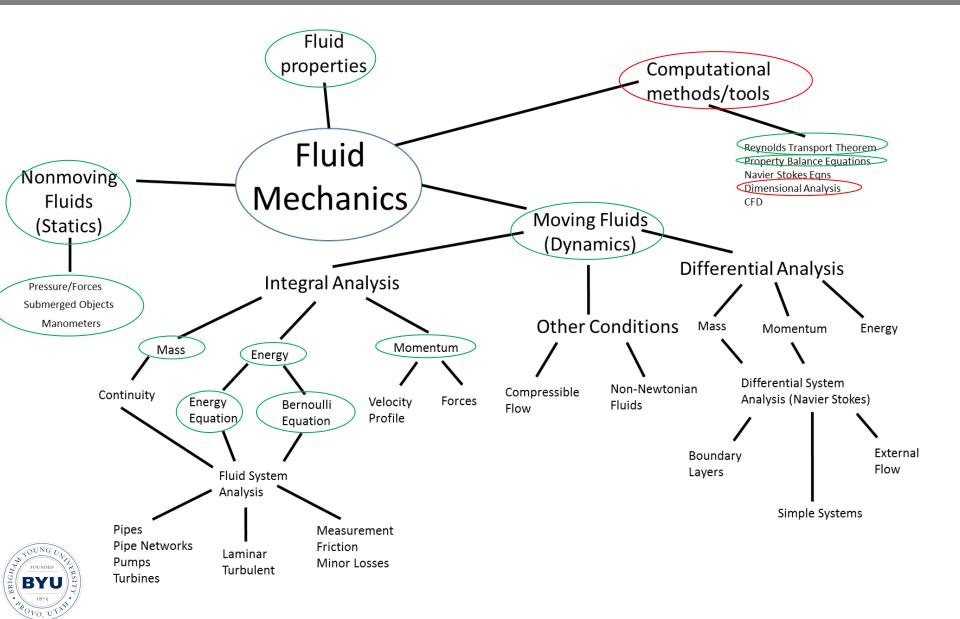
Chemical Engineering 374

Fluid Mechanics

Dimensional Analysis

Fluids Roadmap



Spiritual Thought

Isaiah 1:18

18 Come now, and let us reason together, saith the Lord: though your sins be as scarlet, they shall be as white as snow; though they be red like crimson, they shall be as wool.

Outline

- Introduction and Motivation
 - Theory
 - Limitations
 - Experiments
 - Cost, practicality, efficiency
 - Qualitative understanding
- Dimensionless groups
 - Eliminate the units
 - Methods
 - Governing Equations
 - Force Ratios
 - IT Method
 - Examples
- Similarity / Scale models

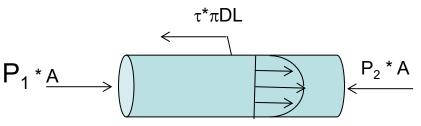
Pipe Flow

- Consider flow in a pipe
 - (We'll do lots of this!)
- So far, mostly frictionless flow
 - (Friction next week)

BYL

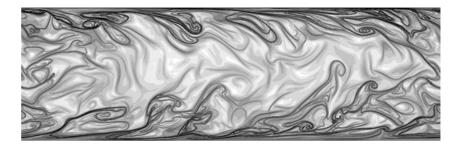
- But we've discussed friction on a
 - plate for Newton's law of viscosity: $\tau = \mu * du/dr$.
- Friction force is balanced by pressure forces:
 - •Pressure drop Δp balanced by friction

Most flows are turbulent (consider averages)
Question/Goal: How to characterize pipe flow?

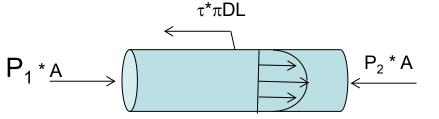


The Challenge

- Turbulent flow is complex
 - Random, Chaotic
- How to measure and relate the important properties...
 - List them:



v, ΔP, L, D, μ, ρ
Or



v, ΔP/L, D, μ, ρ

https://www.youtube.com/watch?v=6OzAx1bPGD4

https://www.youtube.com/watch?v=WG-YCpAGgQQ

Solutions

• Solve Governing Equations?

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} + \frac{\partial \rho v}{\partial y} + \frac{\partial \rho w}{\partial z} &= 0 \\ \frac{\partial \rho u}{\partial t} + \frac{\partial (\rho u^2)}{\partial x} + \frac{\partial (\rho uv)}{\partial y} + \frac{\partial (\rho uw)}{\partial z} &= -\frac{\partial p}{\partial x} + \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) \\ \frac{\partial \rho v}{\partial t} + \frac{\partial (\rho uv)}{\partial x} + \frac{\partial (\rho v^2)}{\partial y} + \frac{\partial (\rho vw)}{\partial z} &= -\frac{\partial p}{\partial y} + \nu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) \\ \frac{\partial \rho w}{\partial t} + \frac{\partial (\rho uw)}{\partial x} + \frac{\partial (\rho vw)}{\partial y} + \frac{\partial (\rho w^2)}{\partial z} &= -\frac{\partial p}{\partial z} + \nu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right) \\ \frac{\partial \rho E}{\partial t} + \frac{\partial (\rho uE)}{\partial x} + \frac{\partial (\rho vE)}{\partial y} + \frac{\partial (\rho wE)}{\partial z} &= -\frac{\partial p u}{\partial x} - \frac{\partial p v}{\partial y} - \frac{\partial p w}{\partial z} + S \end{aligned}$$

(Yes, but its expensive!)

- Experiments?
 - Design Parameters?
 - Span the Space.
 - How many experiments to do?
 - Measure $\Delta P/L$, for a range of D, v, μ , ρ ?
 - + If 10 points in each of D, v, $\mu,\,\rho$ then have 10,000 experiments to do
 - Lets be smart! (be efficient)

Dimensional analysis

Dimensional Analysis

- Dimensional analysis is a powerful tool
 - Insight into equations
 - Relationships among parameters
 - Reduce the number of parameters in a system
 - Obtain scaling laws
- Concept: Nature does not "know" about our <u>units</u>.
 - kilogram, pounds
 - eV, Joules
 - seconds, hours
- Nature only knows about fundamental dimensions, and <u>relative sizes</u> with those dimensions.
 - When we assign values to those dimensions or combinations of those dimensions, we do so relative to our own contrived scales.

Find Dimensionless Groups

- Not all parameters are independent
- Pipe flow:
 - A flow with v=4, D=1 is the SAME, as a flow with v=2, D= $\sqrt{2}$
 - (all else equal).
 - A flow with μ =20, ρ =1.2 is the SAME as a flow with μ =40, ρ =2.4
- Find the independent parameters, the dimensionless groups.
- 3 Methods
 - Governing Equations
 - Force Ratios
 - Π method

Governing Equations

- Find relevant dimensionless groups from a governing equation.
- Bernoulli equation: $\frac{P}{\rho} + \frac{v^2}{2} + gz = C$ Divide by one of the terms like v²/2

$$\frac{P}{\rho v^2/2} + 1 + \frac{gz}{v^2/2} = \frac{C}{v^2/2}$$

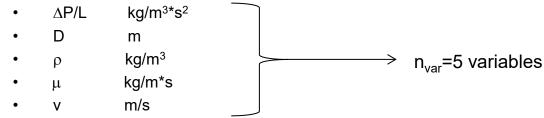
C_p 2/Fr²

Force Ratios

- Take important forces in a problem and form ratios of them
- B.E. → pressure, gravity, momentum (velocity) forces.
 - Pressure \rightarrow P*A
 - − Gravity → mg = ρ Azg
 - Momentum $\rightarrow \rho Av^2/2$
 - (recall stagnation flow converts pressure force to velocity)
 - Form ratios → same as for method of governing equations

П Method

- General and systematic approach
- Simple to do, but lots of conditions and rules to be general
 - WARNING, your book is very confusing here.
- Method for pressure drop in a pipe.
 - 1) List the parameters and variables, along with their symbols & units:



2) Count the number of dimensions $\rightarrow j_{dim} = 3$ (kg, m, s)

3) # of Π 's $\rightarrow k_{\Pi} = n_{var} - j_{dim} = 5-3 = 2$

- That is, I have 5 vars, but how many are independent? Nature doesn't regard our units, so, the problem has to be non-dimensional, so I have 5 variables, but I have to get rid of 3 dimensions (units), so I have 3 constraints → 5-3 = 2 independent variables → 2 Π's.
- 4) Now find the Π 's
 - Need to include all variables among the $\Pi\sp{'s}$
 - The Π 's need to be independent
 - Usually can find the Π 's by trial (and error)
 - Be smart: if you want to find a relationship for ΔP , then don't put ΔP in all the Π 's.

Get the Π 's

- Vars:
 - $\Delta P/L$ kg/m²*s²
 - D m
 - ρ **kg/m**³
 - μ kg/m*s
 - v m/s
 - Π₁:
 - Start with $\Delta P/L$ and get rid of its units using the other variables:

$$\frac{\Delta P}{L} (=) kg/m^2 s^2 | \div \rho \to \frac{\Delta P}{\rho L} (=) m/s^2 | \div v^2 \to \frac{\Delta P}{\rho v^2 L} (=) 1/m | \times D \to \frac{D\Delta P}{\rho v^2 L} = \frac{1}{\rho v$$

• Now try Π_2 :

$$\mu(=) kg/ms \mid \div \rho \to \frac{\mu}{\rho}(=) m^2/s \mid \div v \to \frac{\mu}{\rho v}(=) m \mid \div D \to \frac{\mu}{\rho v D}$$

- The Π 's are nondimensional so they are not unique:
 - $\square \quad \Pi_2 \leftarrow \Pi_1 \Pi_2 \text{ is okay (that is, replace } \Pi_2 \text{ with } \Pi_1 \Pi_2)$

□ Π to any power is okay → our 1/Π₂ above IS VERY SPECIAL: **Re** = ρ**Dv/μ** □ Π₂ is also special (but we'll talk about it later).

More General

- We found Π by inspection, (pretty easy).
- "Repeating variables" approach (book gives lots of rules):

-
$$n_{var} = 5, j_{dim} = 3, k_{\Pi} = 2$$

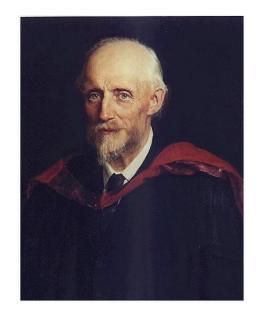
- Pick j_{dim} repeating vars that will show up in all Πs
 - D, ρ, v
- Form the two Πs using the two leftover vars (one var in each $\Pi)$ \Box $\Delta P/L$ and μ

$$\Box \Pi_{1} : \qquad \frac{\Delta P}{L} \cdot D^{a} \rho^{b} v^{c} (=) \ kgm^{-2}s^{-2} \cdot m^{a}kg^{b}m^{-3b} \cdot m^{c}s^{-c} \\ (=) \ kg^{1+b} \cdot m^{a+c-3b-2} \cdot s^{-2-c}$$

- Now, select a, b, c so units cancel (powers=0) \rightarrow kg⁰ = 1
- kg: 1+b=0• m: a+c-3b-2=0• s: -2-c=0 $\rightarrow \Pi_1 = D\Delta P/\rho Lv^2$ as before.

Reynolds Number

- Dimensionless groups reprent the ratio of two physical phenomena.
- Reynolds number
 - Most important in fluid mechanics
 - Re = $\rho Lv/\mu$.
 - Ratio of inertial and viscous forces
 - (or timescales or lengthscales).
- Osborne Reynolds: 1842-1912
 - British engineer.
 - Many advances in fluid mechanics
 - Pipe flow: laminar/turbulent transition.



Applications—Similarity

- Why do animals have the shape and size they do?
- Are giants are practical?



Similarity

- As chemical engineers, we design processes and plants.
 - Use governing equations.
 - These equations are often inadequate
 - Can't always solve.
 - Don't always know the equations.
 - Reality is often too complex.
 - Do experiments.
 - Cost is high \rightarrow small scale, then scale up.
 - Make sure consistent at the two scales.
 - "Have your failures on a small scale, in private; have your successes on a large scale, in public!"
 - 3 similarity requirements
 - Geometric (shape)
 - Kinematic (velocities)
 - Dynamic (Forces)
 - Find the dimensionless groups, and make sure they are the same for the model and the scale versions.
 - Dimensionless groups don't need the full model, only the important parameters.

