

	Open Ended Problems
	 Think about what you are trying to figure out What things do you know? What things would be helpful to know? Is there equations or laws that will help?
•	 Make simplifying but legitimate assumptions Don't assume problem solution Don't get too detailed. If an assumption (steady state vs. transient) makes a problem drastically easier, say so and get to work. Worst case you explain in the check what went wrong!
	 JUSTIFY!!! "This adds 10% error, but allows a theoretical solution" "Assuming 1D flow is inaccurate, but only introduces a small error" "By assuming roughness is constant, we don't account for additional friction at the end of pipe life, but it allows to get an approximate view of what the pressure drop is like"
A duling (44)	 Check with reasonable methods If you see an oddity in the answer, say so; you'll get credit for thinking through it!!! "Correct" is subjective process, assumptions, and thoughts about the answer are better.

Class 16—Laminar Pipe Flow	8
 Pipe discussion More on the Re (physical intuition: force ratio, timescale ratio) Re < 2300 is laminar; Re > 4000 is turbulent (transition in between) 2300 is the number to remember as the laminar/turbulent cutoff Most flows are turbulent Hydraulic diameter (for noncircular pipes) D_h=4A_c/P_w Entrance region Fully developed flow takes time/space Wall stress/friction/pressure drop is higher in entrance region. Derive the velocity profile Force balance → ODE (pressure, wall friction) (BC: v=0 at wall, dv/dx 2 integrations → parabolic profile dp/dx is constant v_{avg} = ½ v_{max} (for circular pipes!) f defined, f = 64/Re 	(=0 at CL)

	Class 20—Pipe Networks
	2 Key parameters: ΔP , V Series Flow $\Delta P_{tot} = \Sigma \Delta P_i$ - Constant V Parallel Flow $- V_{tot} = \Sigma V_i$ $\Delta P_i = \Delta P_j = \Delta P_k$ For pipes between the same two nodes Type 1 (find ΔP) and 2 (find V) problems considered A system demand curve can help conceptually (and computationally) Can also set up and solve system of nonlinear equations
•	 More complex networks are the sum of the parts ΣQ_i=0 at "nodes" (pipe junctions) ΣΔP_i=0 around loops.
BYU BYU	 Like Kirchoff's laws for current flow (but nonlinear)

$$V_{1} = \sqrt{\frac{782.88}{782.88}} = 1 \quad \frac{V_{2}}{V_{1}} = \sqrt{\frac{1179.5}{782.88}} = 1.22 \quad \frac{V_{3}}{V_{1}} = 1.498 \frac{V_{4}}{V_{1}} = 2.43$$

$$V_{1} \text{ is fastest, } V_{4} \text{ is slowest}$$

$$but_{1} \text{ L is significant too}$$

$$L_{relative to L_{1}} = 7 \quad \frac{L_{1}}{L_{1}} = 1, \quad \frac{L_{2}}{L_{1}} = .42, \quad \frac{L_{3}}{L_{1}} = .5, \quad \frac{L_{4}}{L_{1}} = 1.08$$

$$E_{1} = \frac{V_{1}}{V_{1}} \quad E_{2} = \frac{V_{2}}{V_{2}}, \quad E_{3} = \frac{V_{3}}{V_{3}}, \quad E_{4} = \frac{V_{4}}{V_{4}}$$

$$E_{1} = 1, \quad \frac{E_{2}}{2} = 0.5, \quad E_{3} = 0.75, \quad E_{4} = 2.63$$
Path 2 is fastest!

