CHAPTER

1D

NONNEWTONIAN
FLUIDS

This topic was introduced in Sec. 1.5C. In this brief chapter some comparisons
are made between the behavior of newtonian and nonnewtonian fluids in pipe
flow, and references are given for the student who wishes to pursue the subject
further.

15.1 THE ROLE OF STRUCTURE IN
NONNEWTONIAN BEHAVIOR

Almost all nonnewtonian fluids contain suspended particles or dissolved mole-
cules which are large compared with the size of typical fluid molecules (a
typical polymer molecule may be many thousand times as large as a water
molecule). Most nonnewtonian behavior is believed to be associated with the
“long-range structure” due to such larger constituents, where “long-range”
implies long compared with the diameter of a small molecule such as water.
For example, a Bingham fluid is assumed to have a three-dimensional elastic
structure, which will resist small shearing stresses but which comes apart when
subjected to a stress higher than its yield strength. Pseudoplastic fluids (by far
the most common type of nonnewtonian fluid) mostly have dissolved or
dispersed particles (e.g., dissolved long-chain molecules), which have a random
orientation in the fluid at rest but which line up when the fluid is sheared. They
offer more resistance to deformation in the random position, so the viscosity
drops as they become aligned. Dilatant fluids are almost all slurries of solid
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particles in which there is barely enough liquid to keep the solid particles from
touching each other. Their behavior is explained by assuming that at low shear
rates the fluid between the particles is able to lubricate the sliding of one
particle past another but that at high shear rates this lubrication breaks down.

Thixotropic fluids are assumed to have alignable particles, as pseudo-
plastic fluids do (most thixotropic fluids are pseudoplastic), but with a finite
time required for the particles to become aligned with the flow. An additional
factor in thixotropic behavior is probably the existence of weak bonds between
molecules (e.g., hydrogen bonds or entanglements of polymer chains). The
bonds are gradually destroyed by shearing (some authors suggest that ordinary
pseudoplastic fluids are really thixotropic fluids whose particles align or whose
bonds break much faster than can be observed on currently available viscome-
ters). Rheopectic fluids are rare and generally only show rheopectic behavior
under very mild shearing. It has been suggested that mild shearing may help
particles in the fluid to fit together better, thus forming a tighter structure and
increasing the viscosity. Viscoelastic fluids normally contain long-chain mole-
cules, which can exist in coiled or extended forms and which can connect one
to another. When stretched, these molecules straighten out, but when the flow
stops, they tend to revert to their coiled position, causing the elastic behavior.

These descriptions are in accord with most observed behavior of these
fluids and thus offer a mental picture of what may be going on within the fluid.
However, they are by no means rigorous descriptions of the microscopic
internal behavior of such fluids, and they may be modified by further studies of
nonnewtonian fluids.

15.2 MEASUREMENT AND DESCRIPTION
OF NONNEWTONIAN FLUIDS

Much of the past and present research in nonnewtonian fluids has consisted of
measuring their stress-rate-of-strain curves (such as Fig. 1.5) and trying to find
mathematical descriptions of these curves. The study of the flow behavior of
materials is called rheology (from Greek words meaning ‘‘the study of flow”),
and diagrams like Fig. 1.5 are often called rheograms.

As shown in Sec. 1.5, the basic definition of viscosity is in terms of the
sliding-plate experiment shown in Fig. 1.4. For newtonian fluids it was shown
in Sec. 6.3 (Example 6.2) that the viscosity could be determined easily by a
capillary-tube viscometer. It can be shown both theoretically and experimental-
ly that the viscosity determined by such a viscometer for a newtonian liquid is
exactly the same as the viscosity one would determine on a sliding-plate
viscometer. Since capillary-tube viscometers are cheap and simple to operate,
they are widely used in industry for newtonian fluids.

For nonnewtonial fluids which are not time-dependent or viscoelastic, it is
possible to convert capillary-tube viscometer measurements to the equivalent
sliding-plate measurements, but this involves some mathematical manipula-
tions. For time-dependent (e.g., thixotropic) fluids, this does not seem to be
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possible. Thus, most studies of the behavior of nonnewtonian fluids use some
variant of the sliding-plate viscometer. The most common is the concentric-
cylinder viscometer; see Fig. 15.1. (Cone-and-plate viscometers are also widely
used, but they are not discussed here [1, p. 517].)

In such a device a motor-driven cylindrical cup is rotated at a constant
speed. The fluid being tested is in the thin, annular region between the cup and
the bob. The shear stress generated by the fluid on the wall of the bob tends to
turn the bob, but this turning motion is resisted by the torsion wire which
supports the bob. The bob takes up a position where the torque exerted by the
torsion wire is equal and opposite to the torque supplied by the fluid shear on
its surface; from its position, as indicated by a pointer and scale and the
calibration of the torsion wire, one can readily compute the shear stress at the
wall.

This device is really the sliding-plate device wrapped around a cylinder.
Mathematical corrections are needed to make the readings of this viscometer
correspond exactly to those of the sliding-plate viscometer [2], but these are
generally small; see Prob. 15.11. This type of viscometer is suited to newtonian
or nonnewtonian fluids with or without time dependence. Several other
comparable viscometer types are known [2].

The experimental data from a viscometer like that shown in Fig. 15.1 are
normally represented on a plot such as Fig. 1.5. For newtonian fluids the
stress-rate-of-strain behavior is described by Newton’s law of viscosity, Eq. 1.5.
In reading the nonnewtonian literature, observe that most authors use p as the
symbol for viscosity only of newtonian fluids and use n as the symbol for
viscosity of nonnewtonian fluids.
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Concentric cylinder or “cup and bob” viscometer.
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The data on a plot such as Fig. 1.5 can be used more easily if they can be
represented by an equation. The Bingham fluid can be easily represented by

av av
T= yield d—y =0 T = Tyield T = Tyeta T Mo d—y (15.1)

where p, is the slope of the curve on Fig. 1.5.

In many cases the experimental curves for both dilatant and pseudoplastic
fluids can be reasonably well represented by the power law, also called the
Ostwald-de Waele equation:

dV)"
dy
Here K and n are constants whose values are determined by fitting experimen-
tal data. For newtonian fluids n =1 and K = u. For pseudoplastic fluids n is
less than 1, and for dilatant fluids it is greater than 1. The power law has little
theoretical basis; its virtues are that it represents a considerable amount of
experimental data with reasonable accuracy and that it leads to relatively
simple mathematics. Many other equations have been used to represent these
stress-strain rate curves. Some of the simpler ones are those of Ellis [3]
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and Powell-Eyring [4, p. 372]
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In each of these three equations A, B, and C are constants determined from
experimental data. The Ellis and Reiner-Phillipoff equations are based simply
on looking at experimental-data plots and deciding what form of equation
would give the best fit (Probs. 15.1 and 15.2); the Powell-Eyring equation
results from Eyring’s theories of the structure of the liquid state. Since these
three equations each contain three adjustable constants, compared with the
two adjustable constants of the power-law equation, they can fit experimental
data somewhat better than the power law but at the expense of greater
mathematical complexity in their use. These three equations are about equal in
ability to represent wide ranges of experimental data accurately and in
extrapolating experimental data. Such equations are frequently called constitu-
tive equations or rheological equations of state.

For time-dependent fluids (thixotropic or rheopectic) there are no simple
relations now available for showing the stress-strain-rate-time dependence.
Figure 15.2 is a typical stress-time curve for a thixotropic fluid, showing lines of
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FIGURE 15.2
Stress-time curve for various strain rates for a typical thixotropic fluid, obtained in an apparatus
like that shown in Fig. 15.1. [Courtesy of the late E. B. Christiansen.]

constant strain rate. The change with time occurs mostly in the first 60 s, after
which the change with time is minor. For most engineering applications it
would be safe to treat this fluid as a simple pseudoplastic fluid with properties
corresponding to those of the right-hand side of Fig. 15.2.

For viscoelastic fluids no simple relations are known at all, and current
thought is that it may never be possible to describe these fluids adequately by
simple scalar equations, only by tensorial equations [5].

15.3 LAMINAR FLOW OF NONNEWTONIAN
FLUIDS IN CIRCULAR TUBES

Most fluids with pronounced nonnewtonian behavior have such high viscosities
that their flow is laminar in most industrially interesting situations. We saw in
Sec. 6.3 that for any fluid the shear stress at any point in a horizontal circular
pipe is given by

=By ) rir P
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For laminar flow of newtonian fluids we substituted Newton’s law of viscosity
for the shear stress and integrated twice to find Poiseuille’s equation.

For nonnewtonian fluids we can experimentally determine a plot like Fig.
1.5 of the shear stress as a function of dV/dy (which equals dV/dr for circular
pipe flow). From this plot we can find the equivalent of Poiseuille’s equation by
two graphical integrations. This is tedious and has prompted much of the work
of trying to find equations that will represent the data in curves such as Fig.
1.5. If the data can be fit by the power law (Eq. 15.2), then the two
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integrations can be easily performed (Prob. 15.4), yielding
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where ry, is the radius of the tube or pipe. It is also possible to integrate several
other of the shear-stress-strain-rate equations to find analytical solutions for
laminar flow in a circular tube [4, p. 377]. Closed-form solutions for the flow of
power-law fluids in a variety of other geometries are shown by Bird et al. [1, p.
176].

The laminar flow of various kinds of fluids in circular pipes can be easily
compared by plotting (D/4)(—dP/dx) versus 32Q/(wD>) =8V, /D, as shown
in Fig. 15.3. This plot (or its equivalent on logarithmic paper) is very widely
used in nonnewtonian flow calculations and publications. Its merit can be seen
by rewriting Poiseuille’s equation (Eq. 6.8) in the form

D —dP 32 8V,
From Eq. 15.8 we see that for newtonian fluids this plot must be a straight line
through the origin with a slope equal to the viscosity, as in Fig. 1.5. The
left-hand side of Eq. 15.8 (and the ordinate of Fig. 15.3) is exactly equal to the
shear stress at the wall of the pipe, as may be seen by comparison with Eq. 6.3.
The abscissa is related to the shear rate at the wall by

(ﬂ/) _8Vav[§+l d1n (8V,,/D) ]
dr)w” D L4 4 din(D/4)(—dPldx)

This equation, due to Rabinowitsch and Mooney [4, p. 377; 6] is derivable for

(15.9)
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the laminar flow of any homogeneous, non-time-dependent fluid in.a circu.lar
pipe. It has been shown experimentally to work quite well for slurr1§s, Whl.Ch
are not homogeneous, so its applicability is quite broad. For newtonian .ﬂu1d.s
the term in brackets on the right in Eq. 15.9 is equal to 1, so the absqssa is
exactly equal to the shear rate at the wall (Prob. 15.5). For more .complncated
fluids the term in brackets is either a constant (for power-law fluids) or some
relatively simple function of the shear rate. Thus, Fig. 15.3 is the same km@ of
figure as Fig. 1.5, except for a scale factor or some scale-changing function.

Just as the curve for a specific fluid at a given temperature must be the
same in Fig. 1.5, independent of the kind or size of viscometer used, so also
the curve for a given fluid at a given temperature in laminar ﬂow.m}lst be.the
same in Fig. 15.3, independent of the size of tube in which the fluid is ﬂqwmg.
Figure 15.4 shows a set of experimental data for a lime-water slurry flowing in
four tubes of different diameters. As indicated above, the laminar-flow data all
lie on one curve. The steeply rising parts at the upper right of the curve are for
turbulent flow, discussed in Sec. 15.4.

Example 15.1. It is desired to pump 15 gal/min of 23 percent lime slurry in a
1-in pipe. What is the required pressure gradient?
From App. A.3 we have

v 15 gal/min i fr_ 7o
av 2,69 (gal/min)/(ft/s) ~ s s
so that
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Data of Alves et al. [6], replotted by E. B. Christiansen.
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From Fig. 15.4 we have

D<—dP) x Ibf

T\ Ty =045 o2 =21.6Pa

—dP Ibf 4 ft> psi kPa
rorid #  1.049ft/12 144 in’ il B e A

Example 15.2. We wish to double the flow rate in Example 15.1. How much
must we increase the pressure gradient? How much would we have to increase
it if the fluid were newtonian?

From Poiseuille’s equation we know that if the fluid were newtonian (in
laminar flow), we would have to double the pressure gradient to double the
flow rate. From Fig. 15.4 we can measure the slope of the curve at 3[8V, /
(mD)] =42.7 and find that it is approximately 0.13; so we must multiply the
pressure gradient by only 2°'* =1.094 to double the flow rate. |

15.4 TURBULENT FLOW OF NONNEWTONIAN
FLUIDS IN PIPES

For turbulent flow of newtonian fluids in pipes, the experimental pressure-
gradient data are represented by a friction factor—-Reynolds number plot (Fig.
6.10). It seems logical to do the same for nonnewtonian fluids, but in so doing
we must redefine the Reynolds number.

For newtonian fluids the viscosity is independent of the shear stress, so
there is no ambiguity as to which value of the viscosity to use in the Reynolds
number. However, for a nonnewtonian fluid the viscosity is a strong function of
the shear stress; and from Eq. 6.3 we see that the shear stress decreases
linearly with the distance from the wall, becoming zero at the tube center.
Thus, there is no obvious choice of the correct viscosity to use in calculating
the Reynolds number. Numerous theories and methods have been proposed
for determining the critierion for laminar-turbulent transition and the proper
Reynolds number to use in Fig. 6.10. The following method is the simplest and
the most widely used.

Poiseuille’s equation, Eq. 6.8, can be rewritten as Eq. 6.19:

q =10 (6.19)

If we accept this as the definition of the laminar-flow Reynolds number, then
for any constitutive equation which can be integrated twice to give the
nonnewtonian equivalent of the Poiseuille equation, Eq. 15.9 can be used to
define a working Reynolds number. For example, for power-law fluids (Eq.
15.7) this leads (Prob. 15.7) to

8pV2 "D"
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Figure 15.5 shows a plot of the friction factor versus the Reynolds
number as defined in Eq. 15.10. Because the Reynolds number has been
defined by Eq. 15.10, the laminar-flow data must fall on the line shown. For
flow at Reynolds numbers greater than 2000, two possible kinds of behavior
are known. All slurries and many polymer solutions are represented by the
solid curves in Fig 15.5. These do not seem to significantly suppress the
turbulent behavior of the fluid. However, some polymer solutions and polymer
melts, particularly those which show distinct viscoelastic behavior (such as
rubber cement) obey the curves shown dotted at the right in Fig. 15.5. Visual
observation [7] indicates that for these fluids the turbulence in the fluid is much
less than it would be for a newtonian fluid at the same Reynolds number.

The decrease in the friction factor for polymer solutions compared with
newtonian fluids can be quite startling. Dissolving as little as 5 ppm of some
polymers in water produces a solution with only 60 percent of the friction
factor of water at high Reynolds numbers [1, p. 88]. Such pressure-loss-
reduction additives are in current large-scale industrial use [8,9].

In this brief chapter we have not discussed elastic effects in fluid flow,
which occur in many polymer melts and solutions of polymers. Some of these
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FIGURE 15.5

Friction factor plot for power-law nonnewtonian fluids. The line at the left is the laminar—ﬁow
curve, which is the same for newtonian and nonnewtonian fluids. The upper solid curve at the right
is the turbulent, smooth-tubes line for newtonian fluids from Fig. 6.10. The other solid curves at
the right are based on turbulent-flow data of Dodge and Metzner for nonnewtonian fluids which dp
not suppress turbulence. The dotted curves at the right are based on the data of Shaver and Merrill
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effects are quite bizarre and startling; their theoretical explanation is one of the
current major challenges in nonnewtonian fluid mechanics [1, chap. 2].

15.5 SUMMARY

1. Although intuitive explanations and numerous equations are available to
describe the behavior of nonnewtonian fluids, no general, universally
applicable theory or equation has been developed yet. For time-dependent
and viscoelastic fluids, our knowledge consists mostly of descriptions of
observed behavior.

2. For laminar flow of nonnewtonian fluids in circular pipes, we can readily
calculate the behavior from pipe flow data in pipes of other sizes or from
data from any kind of viscometer.

3. For turbulent flow the friction factors for nonnewtonian fluids are generally
less than those for newtonian fluids. Some polymer solutions have surpris-
ingly low friction factors.

4. The behavior of nonnewtonian fluids is currently a very active research
topic. More detailed summaries of results to date can be found [1, 10].

PROBLEMS

See the Common Units and Values for Problems and Examples inside the back
COVET.
\

15.1. For pseudoplastic fluids (the most common types of nonnewtonian fluid) the
fluid frequently appears to be a newtonian fluid with very high viscosity u, at low
shear rates and then again to be a newtonian fluid of lower viscosity u,, at higher
shear rates, with a transition between, as sketched in Fig. 15.6. Show that the
Reiner-Phillipoff equation corresponds to this behavior, and show what con-
stants in that equation corresponds to u, and ..
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15.2. Show that the Ellis equation corresponds, practically, to a newtonian fluid at low
shear rates and a power-law fluid at high shear rates. Show what constant or
combination of constants in the Ellis equation corresponds to u, in Fig. 15.6.

15.3. The data for 200s in Fig. 15.2 can be reasonably represented by a power-law
expression. Find the constants in that expression. Hint: The power law can be
renresented as a straieht line with slope # on log paper.



