CHAPTER 5

5.13 Determine the carburizing time necessary to achieve a carbon concentration of 0.45 wt% at a position 2 mm into an iron–carbon alloy that initially contains 0.20 wt% C. The surface concentration is to be maintained at 1.30 wt% C, and the treatment is to be conducted at 1000°C. Use the diffusion data for γ -Fe in Table 5.2.

5.15 Nitrogen from a gaseous phase is to be diffused into pure iron at 700°C. If the surface concentration is maintained at 0.1 wt% N, what will be the concentration 1 mm from the surface after 10 h? The diffusion coefficient for nitrogen in iron at 700°C is 2.5×10^{-11} m²/s.

5.24 The diffusion coefficients for silver in copper are given at two temperatures are as follows:

T (°C)	$D(m^2/s)$
650	5.5×10^{-16}
900	1.3×10^{-13}

- (a) Determine the values of D_0 and Q_d .
- (b) What is the magnitude of D at $875^{\circ}C$?

5.34 Phosphorous atoms are to be diffused into a silicon wafer using both predeposition and drive-in heat treatments; the background concentration of Sb in this silicon material is known to be 5×10^{19} atoms/m³. The predeposition treatment is to be conducted at 950 °C for 45 minutes; the surface concentration of P is to be maintained at a constant level of 1.5×10^{26} atoms/m³. Drive-in diffusion will be carried out at 1200 °C for a period of 2.5 h. For the diffusion of P in Si, values of Q_d and D_0 are 3.40 eV and 1.1×10^{-4} m²/s, respectively.

- (a) Calculate the value of Q_0 .
- (b) Determine the value of x_j for the drive-in diffusion treatment.
- (c) Also, for the drive-in treatment, compute the position x at which the concentration of P atoms is $10^{24}/m^3$.