ASSIGNMENT #14

7.40 The average grain diameter for a brass material was measured as a function of time at 650°C, which is shown in the following table at two different times:

Time (min)	Grain Diameter (mm)
30	3.9×10^{-2}
90	6.6×10^{-2}

- (a) What was the original grain diameter?
- (b) What grain diameter would you predict after 150 min at 650°C?

7.43 A non-cold-worked brass specimen of average grain size 0.008 mm has a yield strength of 160 MPa (23,500 psi). Estimate the yield strength of this alloy after it has been heated to 600° C for 1000 s, if it is known that the value of k_v is 12.0 MPa-mm^{1/2} (1740 psi-mm^{1/2}).

7.D4 It is necessary to select a metal alloy for an application that requires a yield strength of at least 345 MPa (50,000 psi) while maintaining a minimum ductility (%EL) of 20%. If the metal may be cold worked, decide which of the following are candidates: copper, brass, or a 1040 steel. Why?

7.D5 A cylindrical rod of 1040 steel originally 15.2 mm (0.60 in.) in diameter is to be cold worked by drawing; the circular cross section will be maintained during deformation. A cold-worked tensile strength in excess of 840 MPa (122,000 psi) and a ductility of at least 12%EL are desired. Furthermore, the final diameter must be 10 mm (0.40 in.). Explain how this may be accomplished.