Assignment #18

9.10(bdfh) *Cite the phases that are present and the phase compositions for the following alloys:*

(b) 75 wt% Sn-25 wt% Pb at 175°C (245°F)
(d) 30 wt% Pb-70 wt% Mg at 425°C (795°F)
(f) 37 lb_m Pb and 6.5 lb_m Mg at 400°C (750°F)

(h) 4.5 mol Sn and 0.45 mol Pb at 200°C (390°F)

9.13 A copper-nickel alloy of composition 70 wt% Ni-30 wt% Cu is slowly heated from a temperature of 1300°C (2370°F).

- (a) At what temperature does the first liquid phase form?
- (b) What is the composition of this liquid phase?
- (c) At what temperature does complete melting of the alloy occur?
- (d) What is the composition of the last solid remaining prior to complete melting?

9.24 For 11.2 kg of a magnesium–lead alloy of composition 30 wt% Pb–70 wt% Mg, is it possible, at equilibrium, to have α and Mg₂Pb phases with respective masses of 7.39 and 3.81 kg? If so, what will be the approximate temperature of the alloy? If such an alloy is not possible, then explain why.

9.29 A 45 wt% Pb–55 wt% Mg alloy is rapidly quenched to room temperature from an elevated temperature in such a way that the high-temperature microstructure is preserved. This microstructure is found to consist of the α phase and Mg₂Pb, having respective mass fractions of 0.65 and 0.35. Determine the approximate temperature from which the alloy was quenched.