Assignment #23

12.52 The flexural strength and associated volume fraction porosity for two specimens of the same ceramic material are as follows:

σ_{fs} (MPa)	Р
100	0.05
50	0.20

(a) Compute the flexural strength for a completely nonporous specimen of this material.

(b) Compute the flexural strength for a 0.10 volume fraction porosity.

13.5 Upon consideration of the SiO_2 - Al_2O_3 phase diagram in Figure 12.25, for each pair of the following list of compositions, which would you judge to be the more desirable refractory? Justify your choices.

(a) 20 wt% Al_2O_3 –80 wt% SiO_2 and 25 wt% Al_2O_3 –75 wt% SiO_2

(b) 70 wt% Al_2O_3 -30 wt% SiO_2 and 80 wt% Al_2O_3 -20 wt% SiO_2

13.13 The viscosity η of a glass varies with temperature according to the relationship

$$\eta = A \exp\left(\frac{Q_{\rm vis}}{RT}\right)$$

where Q_{vis} is the energy of activation for viscous flow, A is a temperature-independent constant, and R and T are, respectively, the gas constant and the absolute temperature. A plot of ln η versus l/T should be nearly linear and have a slope of Q_{vis}/R . Using the data in Figure 13.14,

- (a) make such a plot for the borosilicate glass, and
- (b) determine the activation energy between temperatures of 50°C and 900°C.

13.24 (a) Name three factors that influence the degree to which vitrification occurs in clay-based ceramic wares.

(b) Explain how density, firing distortion, strength, corrosion resistance, and thermal conductivity are affected by the extent of vitrification.