CHAPTER 4

4.4 Calculate the number of vacancies per cubic meter in iron (Fe) at 850°C. The energy for vacancy formation is 1.08 eV/atom. Furthermore, the density and atomic weight for Fe are 7.65 g/cm³ (at 850°C) and 55.85 g/mol, respectively.

4.6 *Atomic radius, crystal structure, electronegativity, and the most common valence are given in the following table for several elements; for those that are nonmetals, only atomic radii are indicated.*

Element	Atomic Radius (nm)	Crystal Structure	Electronegativity	Valence	
Си	0.1278	FCC	1.9	+2	
C	0.071				
Н	0.046				
0	0.060				
Ag	0.1445	FCC	1.9	+1	
Al	0.1431	FCC	1.5	+3	
Со	0.1253	НСР	1.7	+2	
Cr	0.1249	BCC	1.6	+3	
Fe	0.1241	BCC	1.7	+2	
Ni	0.1246	FCC	1.8	+2	
Pd	0.1376	FCC	2.2	+2	
Pt	0.1387	FCC	1.5	+2	
Zn	0.1332	НСР	1.7	+2	

Which of these elements would you expect to form the following with copper:

(a) A substitutional solid solution having complete solubility

(b) A substitutional solid solution of incomplete solubility

(c) An interstitial solid solution

4.27 Germanium (Ge) forms a substitutional solid solution with silicon (Si). Compute the number of germanium atoms per cubic centimeter for a germanium-silicon alloy that contains 15 wt% Ge and 85 wt% Si. The densities of pure germanium and silicon are 5.23 and 2.33 g/cm³, respectively.

4.35 Silver (Ag) and palladium (Pd) both have the FCC crystal structure, and Pd forms a substitutional solid solution for all concentrations at room temperature. Compute the unit cell edge length for a 75 wt% Ag–25 wt% Pd alloy. The room-temperature density of Pd is 12.02 g/cm³, and its atomic weight and atomic radius are 106.4 g/mol and 0.138 nm, respectively.