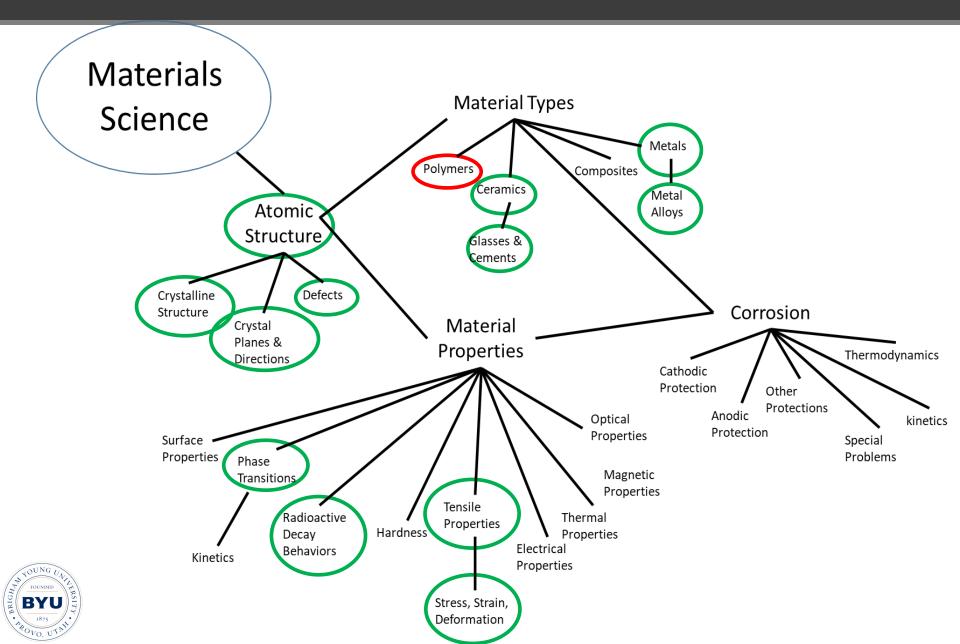
Chemical Engineering 378

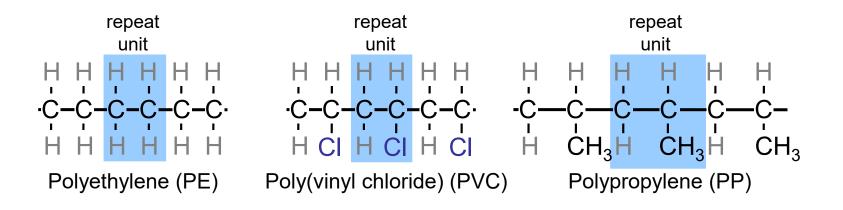
Science of Materials Engineering

Lecture 17 Polymers and Applications I


Spiritual Thought

Isaiah 1:18

18. Come now, and let us reason together, saith the LORD: though your sins be as scarlet, they shall be as white as snow; though they be red like crimson, they shall be as wool.



Materials Roadmap

What is a Polymer?

Poly mer many repeat unit

Ancient Polymers

- Originally natural polymers were used
 - Wood Rubber
 - Cotton Wool
 - Leather Silk
- Oldest known uses
 - Rubber balls used by Incas
 - Noah used pitch (a natural polymer) for the ark

Table 14.1 Compositions and Molecular Structures for Some of the Paraffin Compounds: C_nH_{2n+2}

Name	Composition	Structure	Boiling Point (°C) –164	
Methane	CH4	H - C - H H H		
Ethane	C_2H_6	$\begin{array}{ccc} H & H \\ H - C - C - H \\ I & I \\ H & H \end{array}$	-88.6	
Propane	C_3H_8	$\begin{array}{cccc} H & H & H \\ I & I & I \\ H - C - C - C - H \\ I & I & I \\ H & H & H \end{array}$	-42.1	
Butane	C_4H_{10}		-0.5	
Pentane	C_5H_{12}		36.1	
Hexane	C_6H_{14}		69.0	

Unsaturated Hydrocarbons

- Double & triple bonds somewhat unstable – can form new bonds
 - Double bond found in ethylene or ethene C_2H_4

- Triple bond found in acetylene or ethyne - C_2H_2 H--C=C--H

Organic Chemists

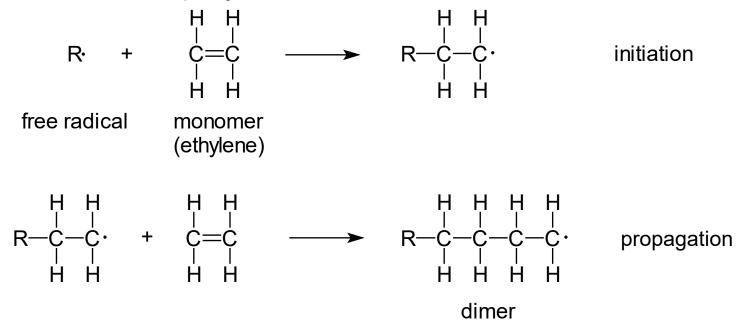
Isomerism

• Isomerism

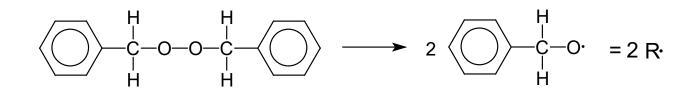
 two compounds with same chemical formula can have quite different structures

for example: C₈H₁₈

• normal-octane

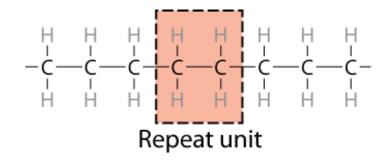

 $H_3C + CH_2 + CH_3$

• 2,4-dimethylhexane

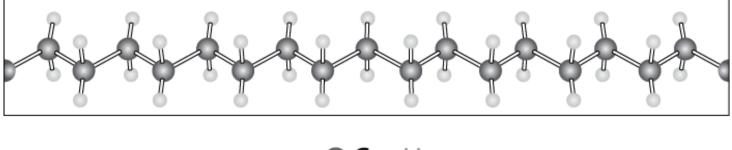


Polymerization and Polymer Chemistry

Free radical polymerization



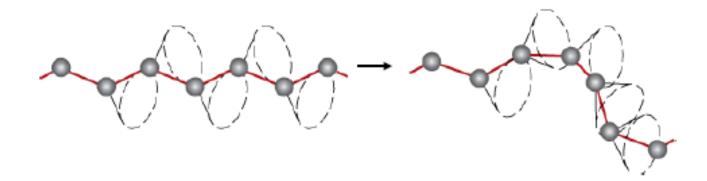
Initiator: example - benzoyl peroxide



Chemistry and Structure of Polyethylene

Adapted from Fig. 14.1, *Callister & Rethwisch 10e.*

OC OH


Note: polyethylene is a long-chain hydrocarbon - paraffin wax for candles is short polyethylene

Polymers – Molecular Shape

Molecular Shape (or Conformation) – chain bending and twisting are possible by rotation of carbon atoms around their chain bonds

 note: not necessary to break chain bonds to alter molecular shape

Bulk or Commodity Polymers

Table 14.3 A Listing of Repeat Units for 10 of the More Common Polymeric Materials

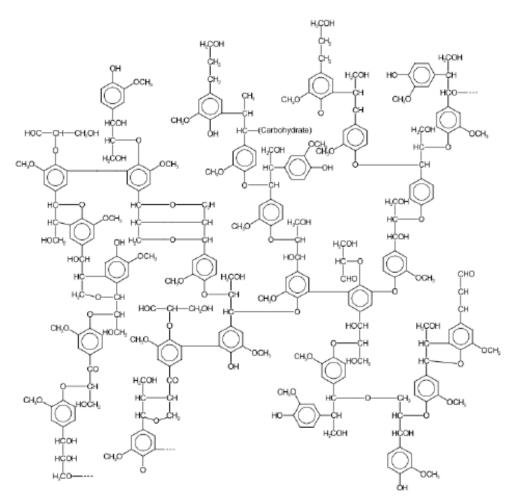
Polymer		Repeat Unit
	Polyethylene (PE)	$\begin{array}{ccc} H & H \\ & \\ -C - C - \\ & \\ H & H \end{array}$
	Poly(vinyl chloride) (PVC)	$ \begin{array}{ccc} H & H \\ $
	Polytetrafluoroethylene (PTFE)	$ \begin{array}{ccc} \mathbf{F} & \mathbf{F} \\ & \\ -\mathbf{C} - \mathbf{C} - \\ & \\ \mathbf{F} & \mathbf{F} \end{array} $
	Polypropylene (PP)	$ \begin{array}{ccc} H & H \\ & & \\ -C - C - \\ & & \\ H & CH_3 \end{array} $

Bulk or Commodity Polymers (cont)

Table 14.3 A Listing of Repeat Units for 10 of the More Common Polymeric Materials

Polymer		Repeat Unit
	Polystyrene (PS)	
	Poly(methyl methacrylate) (PMMA)	$ \begin{array}{ccc} H & CH_3 \\ -C - C - \\ H & C - O - CH_3 \\ H & O \end{array} $
	Phenol-formaldehyde (Bakelite)	CH ₂ CH ₂ CH ₂

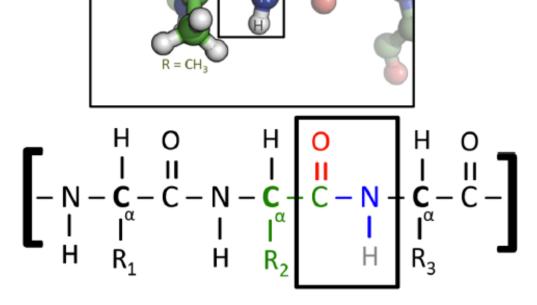
Bulk or Commodity Polymers (cont)


Table 14.3 A Listing of Repeat Units for 10 of the More Common Polymeric Materials

Polymer		Repeat Unit		
	Poly(hexamethylene adipamide) (nylon 6,6)	$-\mathbf{N} - \begin{bmatrix} \mathbf{H} \\ \mathbf{I} \\ -\mathbf{C} - \\ \mathbf{H} \end{bmatrix}_{6} - \mathbf{N} - \mathbf{C} - \begin{bmatrix} \mathbf{H} \\ \mathbf{H} \\ -\mathbf{C} - \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ -\mathbf{C} - \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ -\mathbf{C} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ -\mathbf{C} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ -\mathbf{C} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ -\mathbf{C} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ -\mathbf{C} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ -\mathbf{C} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ -\mathbf{C} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ -\mathbf{C} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ -\mathbf{C} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ -\mathbf{C} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ -\mathbf{C} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ -\mathbf{C} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ -\mathbf{C} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ -\mathbf{C} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ -\mathbf{C} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ -\mathbf{C} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ -\mathbf{C} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ -\mathbf{C} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ -\mathbf{C} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ -\mathbf{C} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \end{bmatrix}_{4} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \end{bmatrix}_{4} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \end{bmatrix}_{4} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \end{bmatrix}_{4} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \end{bmatrix}_{4} \end{bmatrix}_{4} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \end{bmatrix}_{4} \end{bmatrix}_{4} \end{bmatrix}_{4} \begin{bmatrix} \mathbf{O} \\ \mathbf{H} \\ $		
	Poly(ethylene terephthalate) (PET, a polyester)	$-\overset{\mathbf{O}}{\mathbf{C}} \overset{b}{\longrightarrow} \overset{\mathbf{O}}{\overset{\mathbf{H}}}{\overset{\mathbf{H}}{\overset{\mathbf{H}}{\overset{\mathbf{H}}{\overset{\mathbf{H}}{\overset{\mathbf{H}}}{\overset{\mathbf{H}}}{\overset{\mathbf{H}}}{\overset{\mathbf{H}}{\overset{\mathbf{H}}}}}}}}}}$		
	Polycarbonate (PC)	$-0 - \underbrace{\bigcirc b}_{CH_3} - \underbrace{\bigcirc O}_{CH_3} - 0 - \underbrace{O}_{CH_3} -$		

To very complicated

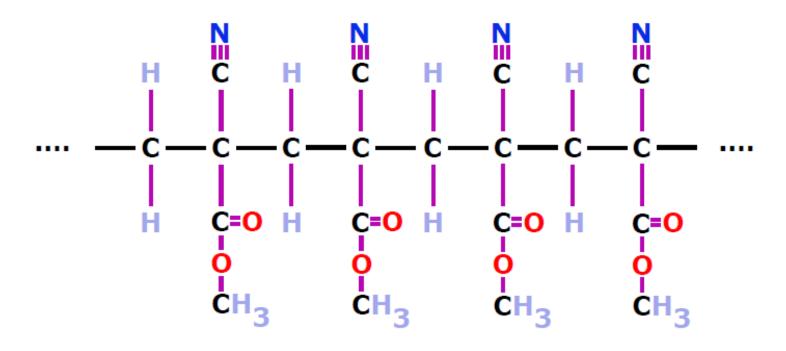
Lignin



41

PROTEINS

Polypeptides



And Super Complicated!

SUPER GLUE

Poly(methyl-2-cyanoacrylate):

MOLECULAR WEIGHT

• Molecular weight, M: Mass of a mole of chains.

Low M

Not all chains in a polymer are of the same length — i.e., there is a distribution of molecular weights

Chain End-to-End Distance, r

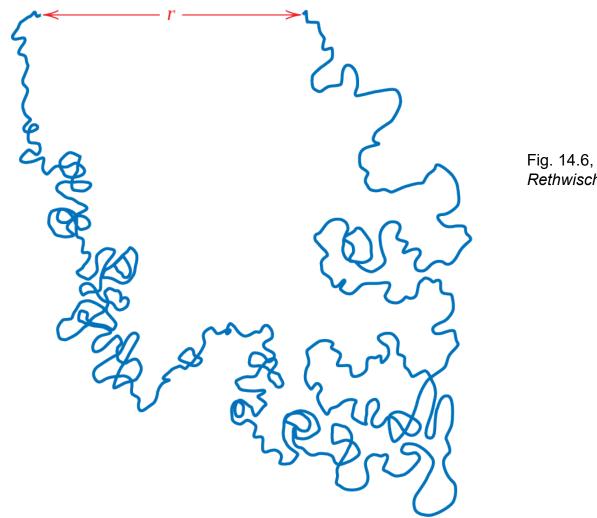
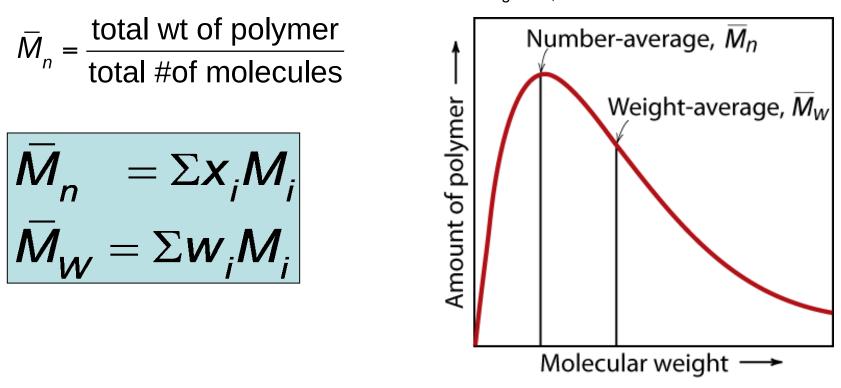



Fig. 14.6, *Callister & Rethwisch 10e.*

MOLECULAR WEIGHT DISTRIBUTION

Fig. 14.4, Callister & Rethwisch 10e.

- M_i = mean (middle) molecular weight of size range *i*
- x_i = number fraction of chains in size range *i*
- w_i = weight fraction of chains in size range *i*

BYU

Molecular Weight Calculation

Example: average mass of a class

Student	Weight	
	mass (lb)	
1	104	
2	116	
3	140	
4	143	
5	180	
6	182	
7	191	
8	220	
9	225	
10	380	

What is the average weight of the students in this class:

- a) Based on the number fraction of students in each mass range?
- b) Based on the weight fraction of students in each mass range?

Molecular Weight Calculation (cont.)

Solution: The first step is to sort the students into weight ranges. Using 40 lb ranges gives the following table:

weight range	number of students _{Ni}	mean weight <i>W</i> i	Calculate the number and weight fraction of students in each weight range as follows:
mass (lb)		mass (lb)	$\tilde{N}_i = N_i W_i$
81-120	2	110	$- x_i = \frac{N_i}{\sum N_i} w_i = \frac{N_i W_i}{\sum N_i W_i}$
121-160	2	142	
161-200	3	184	For example: for the 81-120 lb range
201-240	2	223	· • •
241-280	0	-	$x_{81-120} = \frac{2}{10} = 0.2$
281-320	0	-	^{81–120} 10
321-360	0	-	2 x 110
361-400	1	380	$W_{81-120} = \frac{2 \times 110}{1881} = 0.117$
ROUNDE ROUNDE BYU HOUNDE BYU HOUNDE	→Σ <i>N</i> i 10	∑ <i>N_iWi</i> 1881	total weight

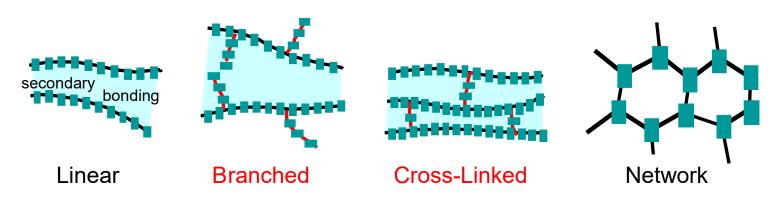
Molecular Weight Calculation (cont.)

	weight range	mean weight	number fraction	weight fraction	
		Wi	X_i	W _i	
	mass (lb)	mass (lb)			
	81-120	110	0.2	0.117	
	121-160	142	0.2	0.150	
	161-200	184	0.3	0.294	
	201-240	223	0.2	0.237	
	241-280	-	0	0.000	
	281-320	-	0	0.000	
	321-360	-	0	0.000	
	361-400	380	0.1	0.202	
$\overline{M}_n = \sum x_i M_i = (0)$.2 x 110+0.	2 x 142+0.3	3 x 184+0.2	2 x 223+0.1	x 380) = <mark>188 lb</mark>
$\overline{M}_{w} = \sum w_{i}M_{i} = (0)$.117 x 110+	-0.150 x 14	2+0.294 x ′	184	

 $\sum_{i=1}^{N} w_i M_i = 218 \text{ lb}$

 $+0.237 \times 223 + 0.202 \times 380) = 218 \text{ lb}$

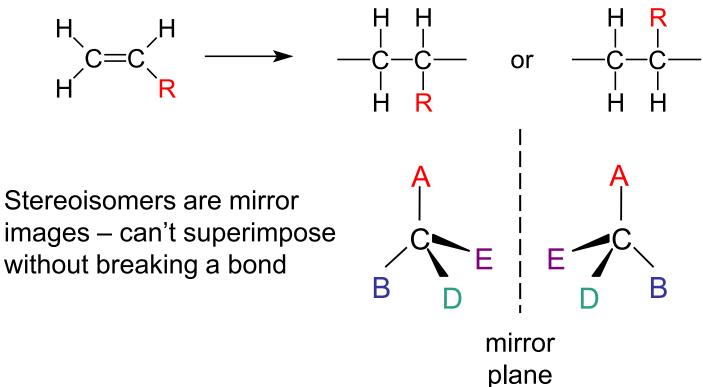
Degree of Polymerization, DP


DP = average number of repeat units per chain

where \overline{m} = average molecular weight of repeat unit for copolymers this is calculated as follows:

$$\overline{\boldsymbol{m}} = \Sigma \boldsymbol{f}_{i} \boldsymbol{m}_{i}$$
Chain fraction \mathcal{I} mol. wt of repeat unit *i*

Molecular Structures for Polymers


Adapted from Fig. 14.7, Callister & Rethwisch 10e.

Molecular Configurations for Polymers

Configurations – to change must break bonds

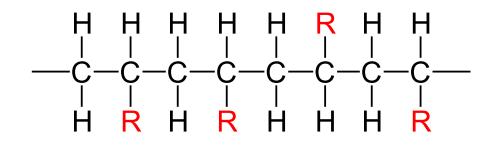
Stereoisomerism

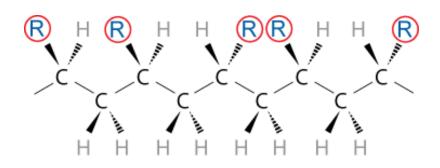


Tacticity

Tacticity – stereoregularity or spatial arrangement of R units along chain

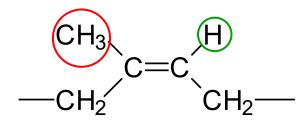
isotactic – all R groups on same side of chain

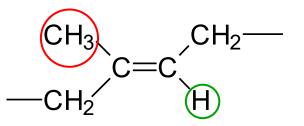

28



syndiotactic – R groups alternate sides

Tacticity (cont.)


atactic – R groups randomly positioned


cis/trans Isomerism

cis

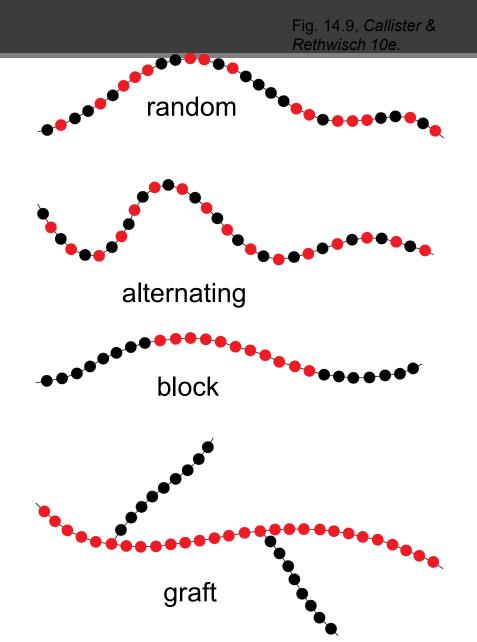
cis-isoprene (natural rubber)

H atom and CH₃ group on same side of chain

trans

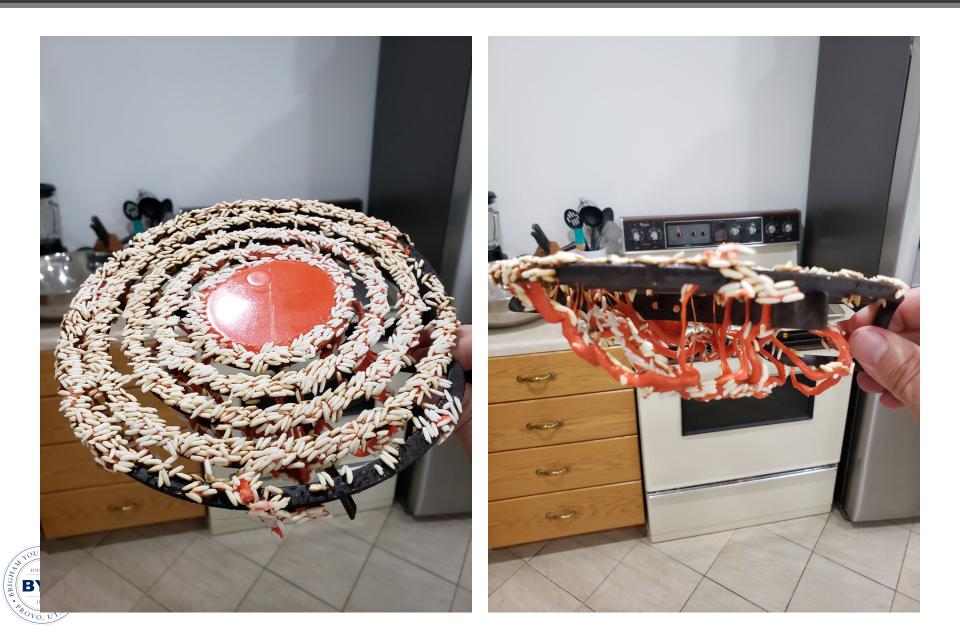
trans-isoprene (gutta percha)

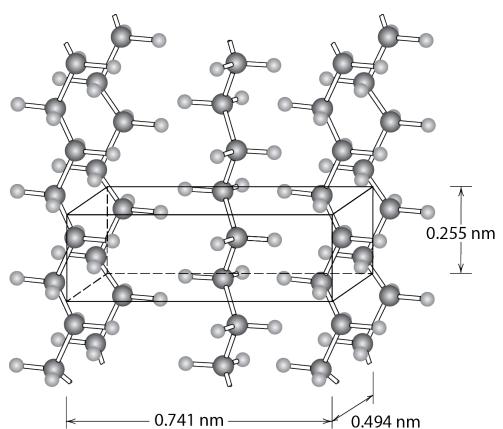
H atom and CH₃ group on opposite sides of chain



Copolymers

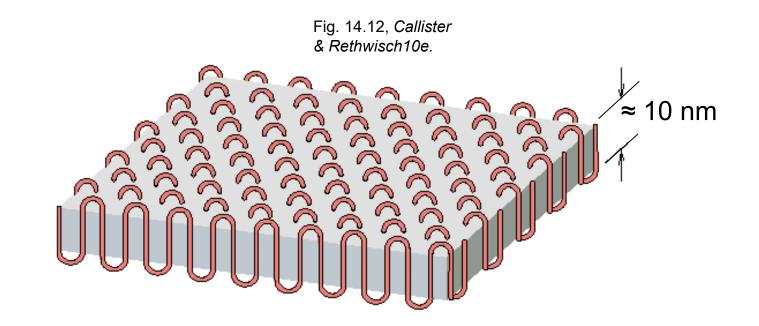
two or more monomers polymerized together


- random A and B randomly positioned along chain
- alternating A and B alternate in polymer chain
- block large blocks of A units alternate with large blocks of B units
- graft chains of B units grafted onto A backbone


Thermoplastic or Thermosetting

Crystallinity in Polymers

Fig. 14.10, Callister & Rethwisch 10e.

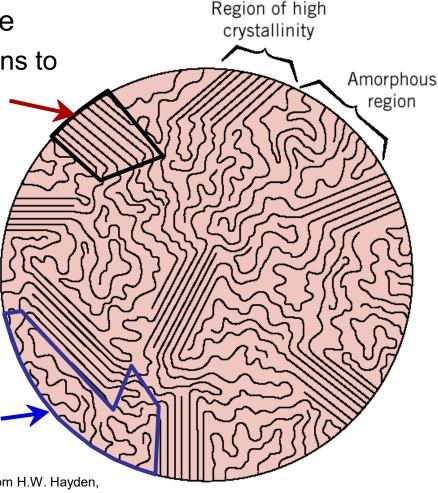

- Ordered atomic arrangements involving molecular chains
- Crystal structures in terms of unit cells
- Example shown
 - polyethylene unit cell

Polymer Crystallinity

- Crystalline regions
 - thin platelets with chain folds at faces
 - Chain folded structure

Polymer Crystallinity (cont.)

Polymers rarely 100% crystalline


- Difficult for all regions of all chains to become aligned crystalline
- Degree of crystallinity expressed as % crystallinity.
 - -- Some physical properties depend on % crystallinity.
 - -- Heat treating causes crystalline regions to grow and % crystallinity to increase.

amorphous region

region

Fig. 14.11, *Callister 6e.* (From H.W. Hayden, W.G. Moffatt, and J. Wulff, *The Structure and Properties of Materials*, Vol. III, *Mechanical Behavior*, John Wiley and Sons, Inc., 1965.)

Polymer Single Crystals

- Electron micrograph multilayered single crystals (chain-folded layers) of polyethylene
- Single crystals only for slow and carefully controlled growth rates

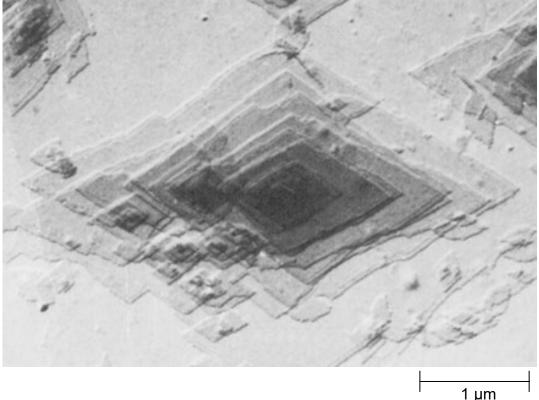
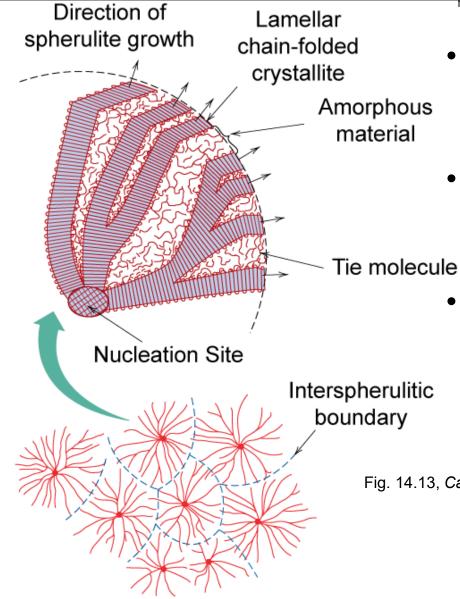



Fig. 14.11, *Callister & Rethwisch 10e.* [From A. Keller, R. H. Doremus, B. W. Roberts, and D. Turnbull (Eds.), Growth and Perfection of Crystals. General Electric Company and John Wiley & Sons, Inc., 1958, p. 498. Reprinted with permission of John Wiley & Sons, Inc.]

Semicrystalline Polymers

- Some semicrystalline polymers form spherulite structures
- Alternating chain-folded crystallites and amorphous regions
- Spherulite structure for relatively rapid growth rates

Fig. 14.13, Callister & Rethwisch 10e.

Photomicrograph – Spherulites in Polyethylene

Cross-polarized light used -- a maltese cross appears in each spherulite

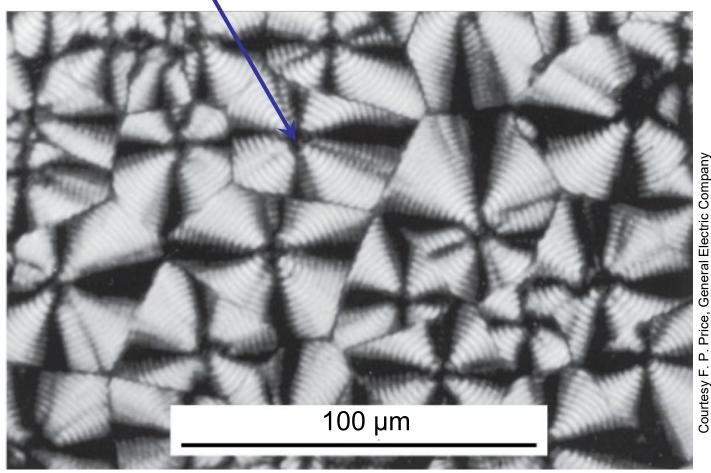


Fig. 14.14, Callister & Rethwisch 10e.