Chemical Engineering 378

Science of Materials Engineering

Lecture 19 Phase Equilibrium

Spiritual Thought

"I Testify that bad days come to an end, that faith always triumphs, and that heavenly promises are always kept."

-Jeffery R. Holland

Materials Roadmap

Phase Equilibria: Solubility Limit

 Solution – solid, liquid, or gas solutions, single phase Adapted from Fig. 9.1,

- Mixture more than one phase Sugar/Water Phase Diagram
- Solubility Limit:

Maximum concentration for which only a single phase solution exists.

Question: What is the solubility limit for sugar in water at 20° C?

100 ΰ **Solubility** Limit 80 (liquid) **Temperature** 60 S (liquid solution 40 i.e., syrup) (solid 20 sugar) Sugar 001 20 40 **6065** 80 C = Composition (wt% sugar)

Callister & Rethwisch 10e.

Components and Phases

• Components:

The elements or compounds which are present in the alloy (e.g., Al and Cu)

• Phases:

The physically and chemically distinct material regions that form (e.g., α and β).

Aluminum-Copper Alloy

Adapted from chapteropening photograph, Chapter 9, Callister, Materials Science & Engineering: An Introduction, 3e.

BYU

Effect of Temperature & Composition

- Altering T can change # of phases: path A to B.
- Altering C can change # of phases: path B to D.

Simple system (e.g., Ni-Cu solution)

	Crystal Structure	electroneg	<i>r</i> (nm)
Ni	FCC	1.9	0.1246
Cu	FCC	1.8	0.1278

- Both have the same crystal structure (FCC) and have similar electronegativities and atomic radii (W. Hume – Rothery rules) suggesting high mutual solubility.
- Ni and Cu are totally soluble in one another for all proportions.

Phase Diagrams

- Indicate phases as a function of T, C, and P.
- For this course:
 - binary systems: just 2 components.
 - independent variables: T and C (P = 1 atm is almost always used).

Isomorphous Binary Phase Diagram

- Phase diagram: Cu-Ni system.
- System is:
 - -- binary i.e., 2 components: Cu and Ni.
 - -- isomorphous

i.e., complete solubility of one component in another; α phase field extends from 0 to 100 wt% Ni.

Fig. 9.3(a), Callister & Rethwisch 10e. (Adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash, Editor, 1991. Reprinted by permission of ASM International, Materials Park, OH.)

Phase Diagrams: Determination of phase(s) present

Rule 1: If we know T and Co, then we know:
 -- which phase(s) is (are) present.

Phase Diagrams: Determination of phase compositions

- Rule 2: If we know T and C₀, then we can determine:
 -- the composition of each phase.
 Cu-Ni
- Examples: Consider $C_0 = 35$ wt% Ni At $T_{A} = 1320^{\circ}$ C: Only Liquid (L) present $C_1 = C_0$ (= 35 wt% Ni) At $T_D = 1190^{\circ}$ C: Only Solid (α) present $C_{\alpha} = C_0$ (= 35 wt% Ni) At $T_{B} = 1250^{\circ}$ C: Both α and L present $C_L = C_{Iiquidus}$ (= 32 wt% Ni) $C_{\alpha} = C_{\text{solidus}}$ (= 43 wt% Ni)

Fig. 9.3(b), Callister & Rethwisch 10e. (Adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash, Editor, 1991. Reprinted by permission of ASM International, Materials Park, OH.)

Phase Diagrams: Determination of phase weight fractions

- Rule 3: If we know T and C_0 , then can determine: -- the weight fraction of each phase.
- Examples:

OUNG

Consider $C_0 = 35$ wt% Ni

- At T_A : Only Liquid (L) present $W_{I} = 1.00, W_{\alpha} = 0$
- At T_D : Only Solid (α) present $W_{L} = 0, W_{\alpha} = 1.00$
- Both α and L present At T_B :

Fig. 9.3(b), Callister & Rethwisch 10e. (Adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash, Editor, 1991. Reprinted by permission of ASM International, Materials Park, OH.)

The Lever Rule

 Tie line – connects the phases in equilibrium with each other – also sometimes called an isotherm

BYU

What fraction of each phase? Think of the tie line as a lever (teeter-totter)

Ex: Cooling of a Cu-Ni Alloy

- Phase diagram: Cu-Ni system.
- Consider microstuctural changes that accompany the cooling of a C₀ = 35 wt% Ni alloy

Cored vs Equilibrium Structures

- C_{α} changes as we solidify.
- Cu-Ni case: First α to solidify has C_{α} = 46 wt% Ni. Last α to solidify has C_{α} = 35 wt% Ni.
- Slow rate of cooling: Equilibrium structure

• Fast rate of cooling: Cored structure

Mechanical Properties: Cu-Ni System

• Effect of solid solution strengthening on:

-- Tensile strength (TS) -- Ductility (%EL)

Binary-Eutectic Systems

EX 1: Pb-Sn Eutectic System

For a 40 wt% Sn-60 wt% Pb alloy at 150° C, determine:
-- the phases present

Answer: $\alpha + \beta$ -- the phase compositions Answer: $C_{\alpha} = 11 \text{ wt\% Sn}$ $C_{\beta} = 99 \text{ wt\% Sn}$ -- the relative amount of each phase Answer:

BYU

Fig. 9.8, Callister & Rethwisch 10e. [Adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 3, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.]

EX 2: Pb-Sn Eutectic System

For a 40 wt% Sn-60 wt% Pb alloy at 220° C, determine:
-- the phases present:

Answer: $\alpha + L$

-- the phase compositions

Answer: $C_{\alpha} = 17 \text{ wt\% Sn}$

C_L = 46 wt% Sn -- the relative amount of each phase

Answer:

B

$$W_{\alpha} = \frac{C_{L} - C_{0}}{C_{L} - C_{\alpha}} = \frac{46 - 40}{46 - 17}$$
$$= \frac{6}{29} = 0.21$$

$$W_{L} = \frac{C_{0} - C_{\alpha}}{C_{L} - C_{\alpha}} = \frac{23}{29} = 0.79$$

Microstructural Developments in Eutectic Systems I

۲́(° For alloys for which L: C_0 wt% Sn C) 400 $C_0 < 2 \text{ wt}\% \text{ Sn}$ Result: at room temperature • -- polycrystalline with grains of 300 α phase having composition c₀ α 200 α : C₀ wt% Sr Τ_E 100 $\alpha + \beta$

Fig. 9.11, Callister & Rethwisch 10e.

20

Microstructural Developments in Eutectic Systems II

21

Microstructural Developments in Eutectic Systems III

- For alloy of composition $C_0 = C_E$
- Result: Eutectic microstructure (lamellar structure)
 -- alternating layers (lamellae) of α and β phases.

Micrograph of Pb-Sn eutectic microstructure

Fig. 9.14, Callister & Rethwisch 10e. (From Metals Handbook, 9th edition, Vol. 9, Metallography and Microstructures, 1985. Reproduced by permission of ASM International, Materials Park, OH.)

Lamellar Eutectic Structure

Figs. 9.14 & 9.15, Callister & Rethwisch 10e. (Fig. 9.14 from Metals Handbook, 9th edition, Vol. 9, Metallography and Microstructures, 1985. Reproduced by permission of ASM International, Materials Park, OH.)

OUNG

FOUNDED

