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Chemical Engineering 378

Science of Materials Engineering

Lecture 22
Phase Transitions, Kinetics and 

Microstructures



Spiritual Thought
“We don’t always know the details of our future. We do 
not know what lies ahead. We live in a time of 
uncertainty. We are surrounded by challenges on all 
sides. Occasionally discouragement may sneak into our 
day; frustration may invite itself into our thinking; doubt 
might enter about the value of our work. In these dark 
moments Satan whispers in our ears that we will never 
be able to succeed, that the price isn’t worth the effort, 
and that our small part will never make a difference… We 
know that God keeps His promises. We need to fulfill our 
part to receive His blessings.”

-Dieter F. Uchtdorf
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Advanced Materials Class
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Materials Roadmap
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Phase Change Timing?
5

https://www.youtube.com/watch?v=HLWOLVmkmKo

https://www.youtube.com/watch?v=HLWOLVmkmKo


6

Phase Transformations

Nucleation 
– nuclei (seeds) act as templates on which crystals grow
– for nucleus to form rate of addition of atoms to nucleus must be 

faster than rate of loss
– once nucleated, growth proceeds until equilibrium is attained

Driving force to nucleate increases as we increase ΔT
– supercooling (eutectic, eutectoid)
– superheating (peritectic)

Small supercooling slow nucleation rate - few nuclei - large crystals

Large supercooling rapid nucleation rate - many nuclei - small crystals
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Solidification: Nucleation Types

• Homogeneous nucleation
– nuclei form in the bulk of liquid metal
– requires considerable supercooling

(typically 80-300°C)

• Heterogeneous nucleation
– much easier since stable “nucleating surface” is 

already present — e.g., mold wall, impurities in 
liquid phase

– only very slight supercooling (0.1-10°C)
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r* = critical nucleus: for r < r* nuclei shrink; for r > r* nuclei grow (to reduce energy) 
Adapted from Fig. 10.2(b), Callister & Rethwisch 10e.

Homogeneous Nucleation & Energy Effects

ΔGT = Total Free Energy
= ΔGS + ΔGV

Surface Free Energy- destabilizes 
the nuclei (it takes energy to make 
an interface)

γ = surface tension

Volume (Bulk) Free Energy –
stabilizes the nuclei (releases energy)
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Solidification

Note: ΔHf and γ are weakly dependent on ΔT

∴ r*    decreases as ΔT increases

For typical ΔT r* ~ 10 nm

ΔHf = latent heat of solidification
Tm = melting temperature
γ = surface free energy

ΔT = Tm - T = supercooling

r* = critical radius



Transformation Rate Mechanics
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Rate of Phase Transformation

Avrami equation =>   y = 1- exp (-kt n)

– k & n are transformation specific parameters
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By convention      rate = 1 / t0.5

Fig. 10.10, 
Callister & 
Rethwisch 10e.

maximum rate reached – now amount 
unconverted decreases so rate slows

t0.5

rate increases as interfacial surface area
increases & nuclei grow



12Temperature Dependence of Transformation 
Rate

• For the recrystallization of Cu, since
rate = 1/t0.5

rate increases with increasing temperature

• Rate often so slow that attainment of equilibrium 
state not possible!

Fig. 10.11,  Callister & 
Rethwisch 10e.
(Reprinted with permission 
from Metallurgical 
Transactions, Vol. 188, 1950, 
a publication of The 
Metallurgical Society of AIME, 
Warrendale, PA. Adapted 
from B. F. Decker and D. 
Harker, “Recrystallization in 
Rolled Copper,” Trans. AIME, 
188, 1950, p. 888.)

135°C 119°C 113°C 102°C 88°C 43°C
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Transformations & Undercooling

• For transf. to occur, must 
cool to below 727°C 
(i.e., must “undercool”) 

• Eutectoid transf. (Fe-Fe3C system): γ ⇒ α + Fe3C
0.76 wt% C
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Fig. 9.24, Callister & 
Rethwisch 10e. 
[Adapted from Binary Alloy Phase 
Diagrams, 2nd edition, Vol. 1, T. B. 
Massalski (Editor-in-Chief), 1990. 
Reprinted by permission of ASM 
International, Materials Park, OH.] 



14

The Fe-Fe3C Eutectoid Transformation

Coarse pearlite   formed at higher temperatures – relatively soft
Fine pearlite       formed at lower temperatures – relatively hard

•  Transformation of austenite to pearlite:

Adapted from 
Fig. 9.15, 
Callister & 
Rethwisch 10e.

γα
α
α
α

α

α

pearlite 
growth 
direction

Austenite (γ)
grain 
boundary 

cementite (Fe3C)
Ferrite (α)

γ

•  For this transformation,
rate increases with 
[Teutectoid – T ] (i.e., ΔT).

Adapted from 
Fig. 10.12, 
Callister & 
Rethwisch 10e.
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Fig. 10.13, Callister & Rethwisch 10e.
[Adapted from H. Boyer (Editor), Atlas of 
Isothermal Transformation and Cooling 
Transformation Diagrams, 1977. Reproduced 
by permission of ASM International, Materials 
Park, OH.]

Generation of Isothermal Transformation Diagrams

•  The Fe-Fe3C system, for C0 = 0.76 wt% C
•  A transformation temperature of 675ºC.
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•  Eutectoid composition, C0 = 0.76 wt% C
•  Begin at T > 727°C
•  Rapidly cool to 625°C
•  Hold T (625°C) constant (isothermal treatment)

Fig. 10.14, Callister & Rethwisch 10e.
[Adapted from H. Boyer (Editor), Atlas of 
Isothermal Transformation and Cooling 
Transformation Diagrams, 1977. Reproduced 
by permission of ASM International, Materials 
Park, OH.]
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Fig. 9.24, Callister & Rethwisch 10e. 
[Adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 
1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by 
permission of ASM International, Materials Park, OH.]

17Transformations Involving 
Noneutectoid Compositions

Hypereutectoid composition – proeutectoid cementite

Consider C0 = 1.13 wt% C
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Fig. 10.16, Callister & Rethwisch 10e. 
[Adapted from H. Boyer (Editor), Atlas of Isothermal Transformation 
and Cooling Transformation Diagrams, 1977. Reproduced by 
permission of ASM International, Materials Park, OH.]
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Steel Microstructures

• Pearlite – fine and course

• Bainite

• Spherodite

• Martensite

18
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Bainite: Another Fe-Fe3C Transformation 
Product

•  Bainite:
-- elongated Fe3C particles in 

α-ferrite matrix
-- diffusion controlled

•  Isothermal Transf. Diagram, 
C0 = 0.76 wt% C 

Fig. 10.18, Callister & Rethwisch 10e. [Adapted 
from H. Boyer (Editor), Atlas of Isothermal Transformation 
and Cooling Transformation Diagrams, 1977. Reproduced 
by permission of ASM International, Materials Park, OH.]

Fig. 10.17, Callister & Rethwisch 10e. 
(From Metals Handbook, Vol. 8, 8th edition,
Metallography, Structures and Phase Diagrams,
1973. Reproduced by permission of ASM
International, Materials Park, OH.)
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•  Spheroidite:
-- Fe3C particles within an α-ferrite matrix
-- formation requires diffusion
-- heat bainite or pearlite at temperature 

just below eutectoid for long times
-- driving force – reduction 

of α-ferrite/Fe3C interfacial area

Spheroidite:  Another Microstructure for the 
Fe-Fe3C System

Fig. 10.19, Callister & 
Rethwisch 10e. 
(Copyright United States Steel 
Corporation, 1971.)

60 μm

α
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(cementite)
Fe3C
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•  Martensite:
-- γ(FCC) to Martensite (BCT)

Fig. 10.21, Callister & Rethwisch 10e. 
(Courtesy United States Steel Corporation.)

Adapted from Fig. 10.21, 
Callister & Rethwisch 10e. 

Martensite:  A Nonequilibrium
Transformation Product
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Adapted from 
Fig. 10.23, 
Callister & 
Rethwisch 10e. 

•  Isothermal Transf. Diagram

•  γ to martensite (M) transformation.
-- is rapid! (diffusionless)
-- % transformation depends only 

on T to which rapidly cooled
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γ (FCC)                          α (BCC) + Fe3C

Martensite Formation

slow cooling

tempering

quench

M (BCT)

Martensite (M) – single phase 
– has body centered tetragonal (BCT) 

crystal structure

Diffusionless transformation        BCT if C0 > 0.15 wt% C

BCT    few slip planes    hard, brittle



23Continuous Cooling 
Transformation Diagrams

Conversion of isothermal 
transformation diagram to 
continuous cooling 
transformation diagram

Cooling curve

Fig. 10.26, Callister & Rethwisch 10e. 
[Adapted from H. Boyer (Editor), Atlas of 
Isothermal Transformation and Cooling 
Transformation Diagrams, 1977. Reproduced 
by permission of ASM International, Materials 
Park, OH.]



24Isothermal Heat Treatment Example 
Problems

On the isothermal transformation diagram 
for a 0.45 wt% C, Fe-C alloy, sketch and 
label the time-temperature paths to 
produce the following microstructures:
a) 42% proeutectoid ferrite and 58% coarse 

pearlite
b) 50% fine pearlite and 50% bainite
c) 100% martensite
d) 50% martensite and 50% austenite
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Solution to Part (a) of Example Problem

a) 42% proeutectoid ferrite and 58% coarse pearlite

Isothermally treat at ~ 
680°C 

-- all austenite transforms 
to proeutectoid α and 
coarse pearlite.  
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B
P
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0
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0.1 10 103 105
time (s)

M (start)
M (50%)
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Fe-Fe3C phase diagram, 
for C0 = 0.45 wt% C

T (°C)

Figure 10.40, Callister & Rethwisch 10e. (Adapted from 
Atlas of Time-Temperature Diagrams for Irons and Steels, G. F. 
Vander Voort, Editor, 1991. Reprinted by permission of ASM 
International, Materials Park, OH.)
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b) 50% fine pearlite and 50% bainite

Solution to Part (b) of Example Problem

T (ºC)
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Fe-Fe3C phase diagram, 
for C0 = 0.45 wt% C

Then isothermally treat 
at ~ 470°C 

– all remaining austenite 
transforms to bainite. 

Isothermally treat at ~ 590°C 
– 50% of austenite transforms 

to fine pearlite.  

Figure 10.40, Callister & Rethwisch 10e. (Adapted from 
Atlas of Time-Temperature Diagrams for Irons and Steels, G. F. 
Vander Voort, Editor, 1991. Reprinted by permission of ASM 
International, Materials Park, OH.)



27Solutions to Parts (c) & (d) of Example 
Problem

c) 100% martensite – rapidly quench to 
room temperature

d) 50% martensite 
& 50% austenite

-- rapidly quench to 
~ 290°C, hold at this 
temperature 
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d)

c)
Figure 10.40, Callister & Rethwisch 10e. (Adapted from 
Atlas of Time-Temperature Diagrams for Irons and Steels, G. F. 
Vander Voort, Editor, 1991. Reprinted by permission of ASM 
International, Materials Park, OH.)
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Mechanical Props: Influence of C Content

Fig. 9.30, Callister & Rethwisch 10e. 
(Courtesy of Republic Steel Corporation.)

•  Increase C content:  TS and YS increase, %EL decreases

C0 < 0.76 wt% C
Hypoeutectoid

Pearlite (med)
ferrite (soft)

Fig. 9.33, Callister & Rethwisch 10e. 
(Copyright 1971 by United States Steel 
Corporation.)

C0 > 0.76 wt% C
Hypereutectoid

Pearlite (med)
Cementite

(hard)

Fig. 10.30, Callister & 
Rethwisch 10e. 
[Data taken from Metals 
Handbook: Heat Treating, 
Vol. 4, 9th edition, V. 
Masseria (Managing 
Editor), 1981. Reproduced 
by permission of ASM 
International, Materials 
Park, OH.]
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29Mechanical Props: Fine Pearlite vs. Coarse 
Pearlite vs. Spheroidite

Fig. 10.31, Callister & Rethwisch 10e. 
[Data taken from Metals Handbook: Heat 
Treating, Vol. 4, 9th edition, V. Masseria
(Managing Editor), 1981. Reproduced by 
permission of ASM International, Materials Park, 
OH.]

•  Hardness:
•  %RA:

fine > coarse > spheroidite
fine < coarse < spheroidite
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Mechanical Props: Fine Pearlite vs. Martensite

•  Hardness:  fine pearlite << martensite.

Fig. 10.33, Callister & Rethwisch 10e. 
(Adapted from Edgar C. Bain, Functions of the 
Alloying Elements in Steel, 1939; and R. A. 
Grange, C. R. Hribal, and L. F. Porter, Metall. 
Trans. A, Vol. 8A. Reproduced by permission 
of ASM International, Materials Park, OH.)
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Tempered Martensite

•  tempered martensite less brittle than martensite
•  tempering reduces internal stresses caused by quenching

Figure 10.34, 
Callister & 
Rethwisch 10e. 
(Copyright 1971 by 
United States Steel 
Corporation.)

•  tempering decreases TS, YS but increases %RA
•  tempering produces extremely small Fe3C particles surrounded by α.

Fig. 10.35, 
Callister & 
Rethwisch 10e. 
(Adapted from Edgar 
C. Bain, Functions of 
the Alloying 
Elements in Steel, 
1939. Reproduced 
by permission of 
ASM International, 
Materials Park, OH.)
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Summary of Possible Transformations
Adapted from 
Fig. 10.37, 
Callister & 
Rethwisch 10e. 
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General Trends
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