Chemical Engineering 378

Science of Materials Engineering

Lecture 22 Phase Transitions, Kinetics and Microstructures

Spiritual Thought

"We don't always know the details of our future. We do not know what lies ahead. We live in a time of uncertainty. We are surrounded by challenges on all sides. Occasionally discouragement may sneak into our day; frustration may invite itself into our thinking; doubt might enter about the value of our work. In these dark moments Satan whispers in our ears that we will never be able to succeed, that the price isn't worth the effort, and that our small part will never make a difference... We know that God keeps His promises. We need to fulfill our part to receive His blessings."

-Dieter F. Uchtdorf

Advanced Materials Class

WINTER 2023

Covering the behavior of materials under extreme temperatures, radiation, corrosion, and other environments.

MON/WED/FRI 2:00 PM CB 384

Credit: Phys.org

Materials Roadmap

Phase Change Timing?

https://www.youtube.com/watch?v=HLWOLVmkmKo

Phase Transformations

Nucleation

- nuclei (seeds) act as templates on which crystals grow
- for nucleus to form rate of addition of atoms to nucleus must be faster than rate of loss
- once nucleated, growth proceeds until equilibrium is attained

Driving force to nucleate increases as we increase ΔT

- supercooling (eutectic, eutectoid)
- superheating (peritectic)

Small supercooling \rightarrow slow nucleation rate - few nuclei - large crystals

Large supercooling \rightarrow rapid nucleation rate - many nuclei - small crystals

Solidification: Nucleation Types

- Homogeneous nucleation
 - nuclei form in the bulk of liquid metal
 - requires considerable supercooling (typically 80-300° C)
- Heterogeneous nucleation
 - much easier since stable "nucleating surface" is already present — e.g., mold wall, impurities in liquid phase
 - only very slight supercooling (0.1-10° C)

Homogeneous Nucleation & Energy Effects

Solidification

 r^* = critical radius γ = surface free energy T_m = melting temperature ΔH_f = latent heat of solidification ΔT = T_m - T = supercooling

Note: ΔH_f and γ are weakly dependent on ΔT

 $\therefore \frac{r^*}{r^*}$ decreases as ΔT increases

For typical ΔT $r^* \sim 10$ nm

Transformation Rate Mechanics

Rate

Rate of Phase Transformation

Temperature Dependence of Transformation Rate

Fig. 10.11, *Callister & Rethwisch 10e.* (Reprinted with permission from *Metallurgical Transactions*, Vol. 188, 1950, a publication of The Metallurgical Society of AIME, Warrendale, PA. Adapted from B. F. Decker and D. Harker, "Recrystallization in Rolled Copper," Trans. AIME, 188, 1950, p. 888.)

12

• For the recrystallization of Cu, since

 $rate = 1/t_{0.5}$

rate increases with increasing temperature

Rate often so slow that attainment of equilibrium state not possible!

Transformations & Undercooling

- Eutectoid transf. (Fe-Fe₃C system):
- For transf. to occur, must cool to below 727°C (i.e., must "undercool")

BYL

Fig. 9.24, Callister & Rethwisch 10e. [Adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.]

The Fe-Fe₃C Eutectoid Transformation

• Transformation of austenite to pearlite:

Coarse pearlite \rightarrow formed at higher temperatures – relatively soft Fine pearlite \rightarrow formed at lower temperatures – relatively hard

Generation of Isothermal Transformation Diagrams

Consider:

- The Fe-Fe₃C system, for $C_0 = 0.76$ wt% C
- A transformation temperature of 675°C.

Fig. 10.13, *Callister & Rethwisch 10e*. [Adapted from H. Boyer (Editor), Atlas of Isothermal Transformation and Cooling Transformation Diagrams, 1977. Reproduced by permission of ASM International, Materials Park, OH.]

Austenite-to-Pearlite Isothermal Transformation

- Eutectoid composition, C₀ = 0.76 wt% C
- Begin at *T* > 727° C

BYL

- Rapidly cool to 625° C
- Hold T (625° C) constant (isothermal treatment)

Transformations Involving Noneutectoid Compositions

Consider $C_0 = 1.13$ wt% C

[Adapted from H. Boyer (Editor), *Atlas of Isothermal Transformation and Cooling Transformation Diagrams*, 1977. Reproduced by permission of ASM International, Materials Park, OH.]

FOUNDED

[Adapted from *Binary Alloy Phase Diagrams*, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.]

Hypereutectoid composition – proeutectoid cementite

Steel Microstructures

• Pearlite – fine and course

From Metals Handbook, Vol. 8, 8th edition, Metallography, Structures and Phase Diagrams, 1973. Reproduced by permission of ASM

International, Materials Park, OH,

• Bainite

Spherodite

Martensite

10 µm

Photomicrograph courtesy of United States Steel Corporation.

From K. M. Ralls et al., An Introduction to Materials Science and Engineering, p. 361. Copyright © 1976 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.

Copyright 1971 by United States Steel Corporation.

Bainite: Another Fe-Fe₃C Transformation Product

Fig. 10.17, *Callister & Rethwisch 10e.* (From *Metals Handbook*, Vol. 8, 8th edition, *Metallography, Structures and Phase Diagrams*, 1973. Reproduced by permission of ASM International, Materials Park, OH.)

Spheroidite: Another Microstructure for the ²⁰ Fe-Fe₃C System

- Spheroidite:
 - -- Fe₃C particles within an α -ferrite matrix
 - -- formation requires diffusion
 - -- heat bainite or pearlite at temperature
 - just below eutectoid for long times
 - -- driving force -- reduction

of α -ferrite/Fe₃C interfacial area

Fig. 10.19, *Callister & Rethwisch 10e.* (Copyright United States Steel Corporation, 1971.)

Martensite: A Nonequilibrium Transformation Product

Martensite needles Austenite

Fig. 10.21, *Callister & Rethwisch 10e.* (Courtesy United States Steel Corporation.)

- γ to martensite (M) transformation.
 - -- is rapid! (diffusionless)
 - -- % transformation depends only on *T* to which rapidly cooled

Martensite Formation

Martensite (M) – single phase – has body centered tetragonal (BCT) crystal structure

Diffusionless transformation BCT if $C_0 > 0.15$ wt% C BCT \rightarrow few slip planes \rightarrow hard, brittle

Continuous Cooling Transformation Diagrams

Conversion of isothermal transformation diagram to continuous cooling transformation diagram

Fig. 10.26, *Callister & Rethwisch 10e*. [Adapted from H. Boyer (Editor), *Atlas of Isothermal Transformation and Cooling Transformation Diagrams*, 1977. Reproduced by permission of ASM International, Materials Park, OH.]

TOUNDED TOUNDED TOUNDED BYU 1875 1875 1875

Isothermal Heat Treatment Example Problems

On the isothermal transformation diagram for a 0.45 wt% C, Fe-C alloy, sketch and label the time-temperature paths to produce the following microstructures:

- a) 42% proeutectoid ferrite and 58% coarse pearlite
- b) 50% fine pearlite and 50% bainite
- c) 100% martensite
- d) 50% martensite and 50% austenite

Solution to Part (a) of Example Problem

Solution to Part (b) of Example Problem

YUnder Voort, Editor, 1991. Reprinted by permis

Solutions to Parts (c) & (d) of Example Problem

¹⁸⁷⁵ International, Materials Park, OH.)

27

Mechanical Props: Influence of C Content

• Increase C content: TS and YS increase, %EL decreases

Mechanical Props: Fine Pearlite vs. Coarse Pearlite vs. Spheroidite

- Hardness: fine > coarse > spheroidite
- %RA: fine < coarse < spheroidite

Fig. 10.31, *Callister & Rethwisch 10e*. [Data taken from *Metals Handbook: Heat Treating*, Vol. 4, 9th edition, V. Masseria (Managing Editor), 1981. Reproduced by permission of ASM International, Materials Park, OH.]

Mechanical Props: Fine Pearlite vs. Martensite

Fig. 10.33, *Callister & Rethwisch 10e.* (Adapted from Edgar C. Bain, *Functions of the Alloying Elements in Steel*, 1939; and R. A. Grange, C. R. Hribal, and L. F. Porter, *Metall. Trans.* A, Vol. 8A. Reproduced by permission of ASM International, Materials Park, OH.)

• Hardness: fine pearlite << martensite.

Tempered Martensite

Heat treat martensite to form tempered martensite

- tempered martensite less brittle than martensite
- tempering reduces internal stresses caused by quenching TS(MPa)

BYU

Figure 10.34, *Callister & Rethwisch 10e.* (Copyright 1971 by United States Steel Corporation.)

tempering produces extremely small Fe₃[']C particles surrounded by α.
tempering decreases TS, YS but increases %RA

Summary of Possible Transformations

