Chemical Engineering 378

Science of Materials Engineering

Lecture 27 Composites: Fiber Orientation

Spiritual Thought

"The Lord's hand is guiding you. By 'divine design,' He is in the small details of your life as well as the major milestones. As it says in Proverbs, 'Trust in the Lord with all thine heart; ... and he shall direct thy paths.' I testify that He will bless you, sustain you, and bring you peace."

-Elder Ronald A. Rasband

Materials Roadmap

Composite

 Combination of two or more individual materials

- Design goal: obtain a more desirable combination of properties (principle of combined action)
 - -e.g., low density and high strength

Classification of Composites

Terminology/Classification

- Composite:
 - -- Multiphase material that is artificially made.
- Phase types:
 - -- Matrix is continuous
 - -- Dispersed is discontinuous and surrounded by matrix

Terminology/Classification

- Matrix phase:
 - -- Purposes are to:
 - transfer stress to dispersed phase
 - protect dispersed phase from environment
 - -- Types: MMC, CMC, PMC metal ceramic polymer
- Dispersed phase:
 - -- Purpose: MMC: increase σ_y , *TS*, creep resist. CMC: increase K_{lc} PMC: increase *E*, σ_y , *TS*, creep resist.
 - -- Types: particle, fiber, structural

Reprinted with permission from D. Hull and T.W. Clyne, *An Introduction to Composite Materials*, 2nd ed., Cambridge University Press, New York, 1996, Fig. 3.6, p. 47.

Classification: Particle-Reinforced (i)

Classification: Particle-Reinforced (ii)

Particle-reinforced

Fiber-reinforced

Structural

Concrete – gravel + sand + cement + water

- Why sand *and* gravel? Sand fills voids between gravel particles

Reinforced concrete – Reinforce with steel rebar or remesh

- increases strength - even if cement matrix is cracked

Prestressed concrete

- Rebar/remesh placed under tension during setting of concrete
- Release of tension after setting places concrete in a state of compression
- To fracture concrete, applied tensile stress must exceed this compressive stress

Posttensioning – tighten nuts to place concrete under compression

Classification: Particle-Reinforced (iii)

- Application to other properties:
 - -- Electrical conductivity, σ_e : Replace *E*'s in equations with σ_e 's.
 - -- Thermal conductivity, k: Replace E's in equations with k's.

Classification: Fiber-Reinforced (i)

Particle-reinforced

Fiber-reinforced

- Fibers very strong in tension
 - Provide significant strength improvement to the composite
 - Ex: fiber-glass continuous glass filaments in a polymer matrix
 - Glass fibers
 - strength and stiffness
 - Polymer matrix
 - holds fibers in place
 - protects fiber surfaces
 - transfers load to fibers

Classification: Fiber-Reinforced (ii)

Particle-reinforced

Fiber-reinforced

- Fiber Types
 - Whiskers thin single crystals large length to diameter ratios
 - graphite, silicon nitride, silicon carbide
 - high crystal perfection extremely strong, strongest known
 - very expensive and difficult to disperse
 - Fibers
 - polycrystalline or amorphous
 - generally polymers or ceramics
 - Ex: alumina, aramid, E-glass, boron, UHMWPE
 - Wires
 - metals steel, molybdenum, tungsten

Fiber Alignment

Classification: Fiber-Reinforced (iii)

Particle-reinforced

Fiber-reinforced

- Aligned Continuous fibers
- Examples:
 - -- Metal: $\gamma'(Ni_3AI)-\alpha(Mo)$ by eutectic solidification. matrix: $\alpha(Mo)$ (ductile)

fibers: γ' (Ni₃AI) (brittle)

From W. Funk and E. Blank, "Creep deformation of Ni₃Al-Mo in-situ composites", *Metall. Trans. A* Vol. 19(4), pp. 987-998, 1988. Used with permission. -- Ceramic: Glass w/SiC fibers formed by glass slurry $E_{glass} = 76$ GPa; $E_{SiC} = 400$ GPa.

From F.L. Matthews and R.L. Rawlings, *Composite Materials; Engineering and Science*, Reprint ed., CRC Press, Boca Raton, FL, 2000. Used with permission of CRC Press, Boca Raton, FL.

Classification: Fiber-Reinforced (iv)

Fiber-reinforced

Particle-reinforced

- Discontinuous fibers, random in 2 dimensions
- Example: Carbon-Carbon
 - -- fabrication process:
 - carbon fibers embedded in polymer resin matrix,
 - polymer resin pyrolyzed at up to 2500° C.
 - -- uses: disk brakes, gas turbine exhaust flaps, missile nose cones.
- Other possibilities:
 - -- Discontinuous, random 3D
 - -- Discontinuous, aligned

Structural

Adapted from F.L. Matthews and R.L. Rawlings, *Composite Materials; Engineering and Science*, Reprint ed., CRC Press, Boca Raton, FL, 2000. (a) Fig. 4.24(a), p. 151; (b) Fig. 4.24(b) p. 151. (Courtesy I.J. Davies) Reproduced with permission of CRC Press, Boca Raton, FL.

Classification: Fiber-Reinforced (v)

Composite Stiffness: Longitudinal Loading

Continuous fibers - Estimate fiber-reinforced composite modulus of elasticity for continuous fibers

Longitudinal deformation

$$E_{cl} = E_m V_m + E_f V_f$$

 E_{CI} = longitudinal modulus

c = composite f = fiber m = matrix

•

Composite Stiffness: Transverse Loading

• In transverse loading the fibers carry less of the load

$$\varepsilon_{c} = \varepsilon_{m}V_{m} + \varepsilon_{f}V_{f} \quad \text{and} \quad \sigma_{c} = \sigma_{m} = \sigma_{f} = \sigma$$

$$isostress$$

$$\boxed{\frac{1}{E_{ct}} = \frac{V_{m}}{E_{m}} + \frac{V_{f}}{E_{f}}}$$

$$E_{ct} = \frac{E_{m}E_{f}}{V_{m}E_{f}} + \frac{V_{f}E_{m}}{V_{m}E_{f}} \quad E_{ct} = \text{transverse modulus}$$

$$c = composite$$

$$f = \text{fiber}$$

$$m = \text{matrix}$$

...

Composite Stiffness

Particle-reinforced

Fiber-reinforced

 τ_{c}

- Estimate of *E_{CC}* for discontinuous fibers:
 - -- valid when fiber length < $15 \frac{\sigma_f d}{m}$
 - -- Elastic modulus in fiber direction:

$$E_{cd} = E_m V_m + \frac{K E_f V_f}{\bullet}$$

efficiency factor.

- -- aligned: K = 1 (aligned parallel)
- -- aligned: K = 0 (aligned perpendicular)
- -- random 2D: K = 3/8 (2D isotropy)
- -- random 3D: K = 1/5 (3D isotropy)

Table 16.3, *Callister & Rethwisch 10e*. (Source is H. Krenchel, *Fibre Reinforcement*, Copenhagen: Akademisk Forlag, 1964.)

Composite Strength

Particle-reinforced

Fiber-reinforced

• Estimate of σ_{cd}^{\star} for discontinuous fibers:

1. When
$$l > l_c$$

$$\sigma_{cd'}^{\star} = \sigma_f^{\star} V_f \left(1 - \frac{l_c}{2l} \right) + \sigma_m' \left(1 - V_f \right)$$

2. When $l < l_c$

$$\sigma_{cd'}^{\star} = \frac{l \tau_c}{d} V_f + \sigma_m' (1 - V_f)$$

