SURFACE AND INTERFACIAL PHENOMENA

1. Surface Energy

A surface is any inhomogeneous boundary between two materials or phases. The atoms at
the surface are in a very different environment than those in the bulk of either phase because (1)

there are not as many bonds, (2) the atoms are spaced to give a different density, (3) the atoms
are adjacent to or bonded to different atoms.

When some bonds are broken, the electron orbitals are not filled completely, so the atoms are
at a higher energy state. Thus the energy required to remove a surface atom to infinity is less
than that for a bulk atom. In other words, to remove a surface atom, fewer bonds must be broken

than a bulk atom, so less energy is required to remove it to infinity; therefore it started out at
higher energy.

This excess energy of surface atoms is called surface energy. Because these atoms have
higher energy, their equilibrium spacing is larger (their oscillations are larger) and the density of
surface atoms is less than bulk atoms. Another model explaining the lower surface density is
that there is asymmetry of the force field acting to pull atoms or molecules back into the bulk
phase. Some surface atoms are pulled back into the bulk and leave fewer and more widely
separated atoms on the surface.

When atoms of different phases are adjacent to each other, they may bond, but usually at a
higher energy than the bulk atoms. Whether they bond or not, there is excess energy from both
sides of the adjacent phases, producing an excess energy at the interface between the phases.

Since the potential energy of a surface molecule (or atom) is greater than that of a bulk
molecule, work must be done to transport or transform a bulk molecule into a surface molecule.
Thus when a new surface is produced, the energy is increased by the reversible work required to
form the surface:

AW, = 1A 1)

where -dW; is the work expended on the system to increase the surface area by dA, and ¥is the
surface energy (positive work W, is defined as work done by the system).

If the surface is created at constant temperature and pressure the reversible work is equal to
the increase in Gibbs free energy, dG,:

AW, = dG, = 1A. 2)

(If the surface is created at constant volume and temperature, then the reversible work is the
Helmholtz free energy.) If yis independent of the area,

AGs = yAA 3)
or
y=AG,/ 4A. @)
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Example 1. Sliding wire experiment to measure surface free energy of a liquid.

— Force

Before | After T ax

Fig. 1. A liquid film on a sliding wire 111ustrates the concept of surface tension and surface
energy.

Assume there is a liquid film on a rectangular piece of wire, with a sliding wire bounding the 4th
side of the film. We must maintain a force F on the wire to keep it from sliding to the left If we
displace the wire by dx to the right, we have put work into the system.

-d(work) = Fdx ‘ ' S)

This force is proportional to the length of the sliding wire, /, with proportionality constant .

Fei | © (
- d(work) = dx ' (7
- d(work) = yd(Area), )

where d(Area) is / dx. Solving for 7,

—d(work) da, ‘ Eauation 4
y = TR (same as Equation 4)

1.1 Solid Surface

1.1.1 Crystalline Solid.

When the new surface is created in a solid, the surface atoms usually cannot relax
completely and the process is not reversible, so the equilibrium equations above do not apply
perfectly for solids. By convention we usually say the solid surface still has surface energy, 7,
but not surface free energy because equilibrium is not achieved. For liquids, the surface is
usually mobile enough that surface stretching is reversible, and the surface is in equilibrium with
the bulk. Thus liquids are usually said to have surface free energy, which is also called surface
tension. For solids, surface energy is defined by

y=AE;/ AA )
and the surface energy usually varies with the crystallographic plane of the area, and sometimes
with the process used to make the new area. (
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The abrupt termination of the crystal lattice at a solid surface causes many dangling bonds
(high energy, unpaired electron orbitals) as well as many surface imperfections. These surface
imperfections include holes, steps, edges, corners, dislocations, and more. FEach kind of
imperfection has a bit of excess surface energy associated with it, and the sum of all the
imperfections produces the macroscopic surface energy. The surface energy of an imperfection
can be estimated by counting the number of broken bonds associated with the imperfection.
Example 2 shows how this may be calculated for a smooth surface. The surface energy of
crystals is usually so high that the surface is very reactive (with oxygen) or very adsorptive.

Example 2. Cleavage of a crystal to measure the surface energy of a solid.
Estimate the surface energy of the (111) plane of gold.

Data: Heat of vaporization is 334 .4 kJ/mol Gold has FCC structure
Atomic radius is 0.144 nm Atomic mass is 197g/mol

Solution:

The surface energy is the energy required to break the bonds along the (111) divided by the
total area created when the bonds are broken.

Steps: 1. Identify the energy per bond in gold (by calculation or by looking it up).
2. Calculate the bonds broken per atom by a cut parallel to (111).
3. Calculate the atoms/m? in the (111) plane.
4. Multiply these to get the energy of bonds broken in this plane.
5. Calculate how much new area is made.
6. Calculate energy per new area.
Basis: 1 m? of cut on the (111) plane.

1. Calculate the energy per bond in gold. The heat of sublimation is not known, but the heat
of vaporization is usually only slightly less than the heat of sublimation for metals. In FCC
each atom is surrounded by 12 others (CN = 12); but during sublimation, only 6 bonds per
atom are broken because 2 atoms share 1 bond. Hence
Energy/bond = Hy/(CN/2)/Na =334.4 kI/mol / 6 / 6.02x1023 bond/mol =
=9.258x10-20 J/bond

2. Calculate the bonds broken per atom by a cut parallel to (111). Look at 1 atom in the
plane. It is bonded to 6 atoms within the plane. A cut parallel to the plane will not cut any of
these. There are 3 more bonds sticking out above the plane and 3 sticking out below the
plane. A cut above the plane will cut these 3 bonds. Therefore you cut 3 bonds/atom.

3. Calculate the atoms/m? in the (111) plane. What is the atomic planar density in (111)?

2 atoms r 2 19 2
X = 1.392x10"” atoms/m
4[312 (0.144><10“9m)

4. Multiply these to get the energy of bonds broken in this plane.
1.392x10"” atoms/m? x 3 bonds/atom x 9.258xX10™2%/bond =3 .87 J/m?2

5. Calculate how much new area is made. The cut has formed 2 surfaces, each with area 1m?2.

6. Calculate energy per new area. y = %%ZTJ =193 J/m?= 1933 erg/cm?.

This is typical for metals, which have v from about 400 to 4,000 ergs/cm? or 0.4 to 4 J/m?.
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1.1.2 Amorphous Solid. Examples of amorphous solids are glasses and non-crystalline
polymers. In metal oxide glasses the unbonded orbitals at the surface usually react with
atmospheric oxygen to form an oxide layer. This oxide layer usually has fairly high surface
energy, but not as high as the pure metal. For example, normal soda-lime glass has a surface
energy of about 120 erg/cm?. Metal oxides have ¥ from about 80 to 500 ergs/cm?,

In polymers there are usually no unbroken covalent bonds. The long chains lie along the
surface. The energy to form these surfaces is just the small amount to overcome the weak Van
der Waals interactions holding the polymer together. Non-polar polymers usually have a surface
energy around 20-30 erg/cm?2, which is low enough that the surface is fairly unreactive. Polar
polymers have yfrom about 30 to 90 ergs/cm®.

1.2 Liquid Surface Energy.

Liquid surfaces are extremely dynamic. Atoms (or molecules) are continually coming to the
surface from the bulk, leaving the surface to the bulk, evaporating from the surface, or
condensing onto the surface. The surface atoms have lower density and higher energy than the
bulk atoms. The surface can easily change shape in response to external or internal forces.
Because liquid surfaces are free to move, they tend to form shapes which will lower the total free
energy of the system. This usually results in rounded (not always spherical) surfaces with
minimal areas. The unfilled electron orbitals of the surface atoms produce the surface energy
which can range from very low for saturated hydrocarbons (no unbonded orbitals) to very high
for liquid metals (mercury) or salts.

Liquid surface energies are easily measured in the laboratory by a number of different
techniques such as the Wilhelmy plate, deNouy ring, pendant drop size, pendant drop shape,
undulating jet, and more. Some typical surface energies (surface tensions) of some liquids are
given below. '

Water 72 erglem? =72 mJ/m? Ethanol 22.3 mN/m
Mercury ~ 436 erg/cm? = 436 mN/m Liquid helium 0.12 mN/m (-269°C)

1.3 Interfacial Surface Energy

At a phase boundary atoms of one phase are forced against a different phase of atoms.
Excess energy at this surface (called an interface) results from several sources such as unbonded
orbitals, bonded orbitals with different atoms (which make a higher energy compound),
misaligned grain boundaries, and more. If the juxtaposition of two phases produces an interface
which has lower energy than either phase, the interface will be unstable and the two phases will
diffuse into each other producing a new phase which has lower energy. A stable interface is
usually only a few atoms thick, but in some cases it can be thicker if the structure of the bulk
phase is perturbed by the presence of the adjacent phase. In this case one has a interfacial
volume, called an interphase, which has properties different than either phase. Interfacial
energies can be extremely low (water against ice) or very high (mercury against air).

2. Interfacial Phenomena

Interfacial phenomena occur in many chemical engineering processes where there are
interfaces such as liquid/liquid, liquid/gas, liquid/solid, solid/gas and solid/solid. The
phenomena are governed by the excess free energy and excess pressure at curved interfaces. The
most important governing equations are the LaPlace and the Young equations.
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2.1 LaPlace Equation.

The surface energy of a liquid drop or bubble tends to pull the bubble into a spherical shape
and slightly squeeze the fluid inside. This can be illustrated by considering a gas bubble
surrounded by liquid. In the absence of flow, gravity, or other fields, the bubble is spherical with
radius r and surface area 47nr. If work is done on the system (bubble and liquid) to cause the
radius to increase by dr, the corresponding increase in free energy is 8wyrdr. The increase in
surface free energy due to expansion must be balanced by application to the system of pressure
volume work APAmr2dr, i.e. the work required for expansion is equal to the increase in surface
free energy or the work to make a new surface (note that work W is positive if done by the
system and AP the pressure across the film is P,-P; or P)-P,,., since the pressure inside the
bubble is higher than ambient pressure P, ):

Fig.2
RN Kt d K to mak if
7 : work to expan =  work to make new surface
N /
/ g\ \ —dW =force X distance -dW =dG, =d(Ay)
[ ' —dW = AP X area X dr d(AY) = d@my2)
( ) Pl —dW =APx 4TCr2 X dr d(A,Y) - 4E’}Qrdr

/ AP X 4qur2dr= 8myrdr
/ ap=2Y

where AP = Po-P1. Thus

AP = 2y/r (10)

This is known as the LaPlace equation and gives the magnitude of the pressure drop across the
film. A more general form of the LaPlace equation is: '

A=yt + L) (11)

where ri and rp are the two orthogonal radii of curvature of the surface. The pressure is always
highest on the inside curvature side of the interface. If you measure the pressure drop across a
soap film bubble, the pressure drop is 4y/r because you must cross two interfaces (gas to liquid,

then liquid to gas). Equations 10 and 11 account for capillary rise and other capillary
phenomena. -
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Example 3: Derivation of Capillary Rise Equation

If a capillary is placed in a liquid reservoir, surface tension can bring about a rise in the liquid
level inside this capillary relative to the reservoir height as shown in Fig. 3 below.

An approximate treatment of capillary rise is made possible in terms of the LaPlace equation.
If the liquid wets the walls of the capillary, the liquid surface will lie parallel with the capillary
wall and will be concave. Moreover, if the capillary is circular in cross-section and not too large
in radius, the meniscus will be approximately hemispherical as illustrated in Fig. 3. Accordingly,
the equation of LaPlace reduces to its simplest form:

AP = 2v/r (12)
where 1 is the radius of the capillary. This equation predicts an inverse relationship between

pressure drop and radius. If h denotes the height of the meniscus above the flat liquid surface,

then AP must also equal the hydrostatlc pressure in the column of the liquid in the caplllary
Thus

AP = Apgh (13)
where Ap denotes the difference in density between the liquid and gas phase and g is the

acceleration of gravity. Eliminating AP between Equations 10 and 12 and noting that the liquid
density is generally much greater than that of the gas phase

pigh =2y/r or h=2y/pgr (14)

Thus, the capillary rise h can be calculated from 14, given the surface tension, liquid density, and
capillary radius. If wetting is incomplete, h = 2ycosé/p,gr

\N§~

N

7

0,777

Fig.3. Capillary rise (capillary diameter magnified greatly in relation to reservoir;
capillary height not magnified).
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Example 4: Calculation of Capillary Rise
What will be the capillary rise of benzene (y = 29 dyne/cm) in a polyethylene capillary tubing
of 0.2 mm inside diameter at 20°C and 1 atm? Assume benzene (p = 0.88 g/cn?®) completely
wets the PE tubing. Will the rise be positive or negative?
answer: Using Equation 14 above
h = 2y/pgr (14)
h =2 (29 dyne/cm)/{(0.01 cm)(0.882/cm?)(980 cm/s?)]

(note that a dyne is a g cm/s?)

2.2 Cohesion and Adhesion

Cohesion refers to how well a material is bonded to itself. We define the work of cohesion,
We, as the work per area to separate a single phase material. Two new surfaces, each with

surface energy 7y are formed. Thus the work of cohesion is

W, =2y; (15)
where the subscripts refer to the 2 new interfaces.

Adhesion refers to how well two materials adhere at their interface. We define the work of
adhesion, Wy, as the work per area to separate two phases.

Wa=Ya+ Y8~ "VaB- (16)
2.3 Wetting and Spreading of Liquids on Solids (Young's and Gibb's Equations)

2.3.1 Complete Spreading. When a drop of liquid contacts a solid, it can remain a spherical
drop, it can partially spread out on the drop forming a spherical cap, or it can completely spread .
on the solid, forming a layer only a few molecules thick. To determine which is the case, let us
do a thought experiment suggested by Figure 4 in which we force a small drop to spread over a
large surface. Before a drop of liquid contacts the surface, the surface free energy of the system
is the solid-vapor surface free energy, 7,,, multiplied by the solid area (assuming the original area
of the drop is much smaller than the solid area). When the liquid is spread completely on the
solid, the system now consists of two interfaces (the solid-liquid and the liquid-vapor interfaces),
and the surface free energy of the system is 7, + vy multiplied by the solid area. One may now
ask the question, "Does the system attain the lowest free energy when the drop is spread
completely on the solid?"; if so, complete spreading will occur. We can see that if the v, is
larger than the sum of vy, + 7y, the reduction in free energy will drive the drop to spread
completely over the surface. Thus spreading occurs if:
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Ysv > Vv + Y
or

0< Ysv — (Ylv + Ysl) (17)

Complete spreading will also occur if v,, = v}, + s because the drop will flatten out until it has a

contact angle of zero as will be shown in the next section.

Be_fore

Figure 4. Complete spreading of a drop on a solid.

In the early 1920's Harkins and Feldman studied the spreading of organic liquids on a
number of solid and liquid substrates. They defined a "spreading coefficient," S, as the
difference between the work of adhesion, W,, and the work of cohesion W,. Therefore the
spreading coefficient becomes

S=Wy-We (18)
S= Yoy + M- Wl-2Wv = Yov- My + ¥si) (19)

Harkins and Feldman observed that liquids spread completely when S > O which is consistent
with Egs. 15, 16, and 17. In summary then, spreading is favored if (1) the surface energy of the
solid (7, is high and (2) surface energies of the liquid and liquid-solid interface are small, since
the reduction in free energy of the surface will drive the drop to spread over the surface.

232 Partial Spreading. Now let us examine the case in which the solid surface energy is
less than %, + 9, or in which § is negative and the spreading is not complete. In this case the
drop forms a sphere or spherical cap on the solid as long as the drop is small enough that
gravitational distortion of the drop shape is negligible. The contact angle is defined as the angle
between the solid-liquid interface and the liquid-gas interface at the edge of the drop. In 1805,
Thomas Young stated (without proof) that the equilibrium among the attractive forces between
particles of fluid and particles of solid will cause the fluid to form a certain angle with the solid.
This angle was defined by:

Fo=Fg+ Fcos - (20)

where the F, F;, and F; refer to the forces of the solid, the common surface, and the liquid
respectively. This was the genesis of Young's equation, a mechanical balance of rather ill-
defined forces. There is a force balance also in the vertical direction: remember that, "when you
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push against an immovable wall, the wall exerts an equal force in the opposite direction.” So the
solid substrate exerts an equal force in the downward direction at the three phase boundary.

Unlike Young, Willard Gibbs related the contact angle to the more familiar concept of
surface energy. He proposed that the 3-phase boundary line (between an insoluble solid and 2
fluids) would displace along the solid surface until it reached a point at which any further
displacement of the line would create an increase in the free energy associated with the 3 phase
boundary line. This condition of equilibrium reduces to

Yiv (€05 8) = Yy - Y5l (21)
which has the same form as Young's equation, but which employs surface energies instead of

surface forces. Eqn. 21 can be rearranged to solve for the interfacial energy; if, in addition, we
assume that the vapor is air and drop the v subscript the equation becomes:

Yst = % - i (cos ©) (22)

Thus, the interfacial energy can be calculated from Eqn. 22 if we have values for the surface
energy of the solid, the surface tension of the liquid, and the contact angle.

Vs

Fiure 5. Partial spreadin of a drop on a solid.

We can prove and illustrate this equation by combining the familiar rule that "a system
moves to its state of lowest free energy" with a simple model of a liquid drop contacting a solid
surface. Referring back to the discussion of the spreading coefficient, we see that if
Ysv < Yiv + Vs, then the free energy of the system is not minimized at a state of complete
spreading, and so the drop will not spread completely. The question now becomes: "How far
must the drop spread to minimize the free energy of the system?" The answer is given by
formulating the equation that describes the change in free energy: one simply subtracts the

energy "before" from the energy "after" the drop wets the surface. The surface energy before the
drop contacts the surface is:

Total surface energy before = S..7,, + 471y, (23)
where Sy is the total area of the solid surface and ry is the radius of the drop. After the drop has

contacted the surface, it spreads to form a spherical cap with a contact angle 6 as shown in Figure
5. The total surface energy after the wetting of the drop is:
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Total surface energy after =(St-ADYsy + ANy + A Ysi ' (24)

where Ay is the area of the interface between liquid and solid, and A is the liquid-vapor

interfacial area of the spherical cap of liquid. A;and AC are given by :

Ay =nr2(1-cos20) o (25)

and , ' |
A, =27nr.2(1-cosh) (26)

where 1, is the radius of curvature of the spherical cap. The change in free energy of the system
is found by subtracting Eq (23) from Eq (24):

AG =27 %, (r.2(1-c0s0)-2 12) + 1t r2(1-cos20)(Y) - Vo) - ' 27

The minimum in free energy is found by equating to zero the derivative of Eq (27) with respect
to cosB, and then solving for cos0: '

5 . . 2
_dAG  _ =g 2YLv( (1 -cs)%(? -r%) 2018 (YsL~Ysv) + (1 -G%(Ysr?sv)i—r;-} o

d(cos8) v (28)
where © is a shorthand notation for cos0. After much math, you can solve for ¢ to obtain
6 = cos0 = (ysy = Ys1)/ My - ‘ | (29a)

which is identical to Eq (21).

It is very rare to have a contact angle of 180° (absolutely no wetting). Eq. (22 or 29a)
indicates that an angle of 180° would require v, =y, - v; (Eqn. 29b, dropping v subscripts). This
is rarely the case for aqueous solutions or organic liquids on glass or solid organic solid surfaces
because the interfacial free energy vy is usually less than the liquid surface tension v; hence, the
requirement (Eqn: 29b) is not met—rather jt predicts a negative surface energy for the solid.
However, in the case of liquid metals (such as mercury) on glass or organic solids v and v, are
both so high that v, is by comparison negligible and a contact angle of 180° is approached (see
Example 4). While angles of 180° are rarely obtainable, "water-proofing" surfaces, even porous
surfaces, is nevertheless possible. If the contact angle is greater than 90°, capillary pressure will
resist the penetration of a liquid into a porous solid, so the rain will not penetrate unless pressure
is applied. :

Sunimary of Equations for Surface Tension:

S="s-(M+7s)) (19)
when S >0 liquids spread completely
when S=0 liquids spread completely, 6 = 0
when S <0 droplets spread only in part with contact angle 0
for S > O ’YS > 'Y] + Ysl (17)
forS<0 Ys1 =Ys = Y1 (cos 0) (22)
W, =2y;; (15)
Wa =% + v -7sl (16)
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Example 4: Calculation of Interfacial Energies, Work of Adhesion and
Spreading Coefficient

The contact angles of mercury, water, and benzene on a solid paraffin wax are shown below.
Estimate interfacial energy (ys1), work of adhesion (Wy), and spreading coefficient (S) for each
liquid-paraffin pair. The surface energy (ys) of the solid paraffin is 50 dynes/cm.

Liquid Surface Tension Contact Angle (°)
(mN/m or dyne/cm)

mercury 476 180
water 72.8 60
benzene 29 3

Solution: Use Equations 22, 16, and 19 in that order to calculate Ysl, Wa, and S.

Liquid Y Wa S
sl
mercury 526 0 -952
water 13.6 109 -36
benzene 21 58 0

Note: High Ys] implies an unfavorable solid-liquid interface; high W, implies good adhesion; S < 0
implies less than complete spreading.

Example 5: Evaluating Interfacial Free Energy

Which has the lower interfacial free energy? Liquid A or B? Assume 2 different liquids in
contact with the same solid.

0

Solid

From Equation 22 above

for §<0 Ysi = Vs - Yi(cos 6) (22)

Assume an arbitrary value, such as % = 100 dyne/cm. Then:
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For A:
0 = 180°C (based on drawing above); 7 is large--assume 500 dyne/cm
From Eqn.3 %1 = % - % (cos ©) =100 - (-1) 500 =600 dyne/cm

For B:
0 = 0° based on drawing; %, is small--assume 50 dyne/cm
From Eqn.3 % = % - % (cos ©) =100- (1) 50 =50 dyne/cm

Since AGs = 7 AA, the areas are equivalent, and both systems begin with the same state, the
interfacial energy is much smaller for B.

2.4 Liquid-liquid Interactions

Although the force balance concept of Young's equation does not involve free energy
concepts, a force balance does exist at the corner of a drop, and the use of a force balance in the
horizontal direction will help you to never forget Young's equation. ‘

Similarly a force balance is useful to predict the relationship between fluid interfacial
energies and the angles of contact. If one has 3 immiscible fluids (3 immiscible liquids or 2
immiscible liquids and a gas), a small volume of the fluid of intermediate density will form a
lens between the other 2 fluids. Figure 6 shows the intersection of liquids A, B, and C with the
corresponding liquid-liquid interfacial energies (tensions).

¥
B BC
B
< : > TAR
A A

YaC

Figure 6. Three immiscible fluids (left) and the interfacial energies and angles at their intersection.

Two important relationships exist relating the angles of intersection and the interfacial
energies:

YAB +YACCOS O +Ypcos B =0 (30)
YaB _ Yac _ VBC
sin® ~ sinP sino 3D

If Yop =Yac=7Yac as is the case for the junction of grain boundaries in a single phase material,

then ot=P=0=120°. Therefore equilibrium grain boundaries should meet at angles of 120°.
Such a structure is called an equiaxed structure. :
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3. Colloidal Systems

Colloidal systems refer to two phase systems in which one of the phases is discontinuous
(e.g. in the form of droplets) and has a size between 1 nm and 0.01 mm. In these finely dispersed
systems the surface/volume ratio is extremely high, and the properties of the systems are
dominated by surface properties such as surface energy and LaPlace pressures inside the
particles. Nearly all colloidal systems are unstable because the high surface energy resulting
from the high surface area can be reduced by collapsing or coagulating the system into larger
particles. Major industrial effort is spent in stabilizing the colloidal system when needed, and
suppressing them when not desired. The names of the various systems are:

Dispersed phase /Continuous phase Name Examples
Solid/Liquid Suspension, gel, paste Plaster, dough, jello, skim milk
Solid/Gas Smoke Smoke, fluidized bed, cirrus clouds
Liquid/Liquid Emulsion latex paint, salad dressing
Liquid/Gas Fog Steam, fog, clouds (cumulus)
Gas/Liquid Foam Shaving cream, chocolate mousse
Gas/Solid Solid Foam Pumice, Styrofoam, bread

3.1 Solid Suspensions, Gels and Pastes

Solid suspensions, gels and pastes are dispersions of solids in liquids. Gels are usually less
concentrated (< 15 wt%) than pastes. Solid suspensions are usually not viscous (< 2 wt%). Gels
usually have particles that entrain or absorb or trap large amounts of water. In some cases these
solids can interlink, forming solids which can flow with application of sufficient shear stress
(such as quicksand) or temperature. Pastes are usually so concentrated that solid particles are
touching each other. Both gels and pastes exhibit non-Newtonian behavior.

3.2 Emulsions

An emulsion is a dispersion of 2 immiscible liquids. Usually one phase is in the form of
droplets and the other is continuous. Emulsions of organic liquids in water are very important in
food science, paints and chemical separation systems. Emulsion droplets about 1 micron or
larger are inherently unstable and the emulsion will quickly break up unless an emulsifier is
added. An emulsifier is an amphiphilic molecule with a hydrophilic and a hydrophobic end. The
emulsifier adsorbs at the droplet interface and reduces the interfacial energy between the phases,
thus reducing the driving force for coagulation. For droplets smaller than 0.1 micron, the

electrostatic charge on the surface of the droplets often keeps the droplets separated from each
other.

3.3 Foams

Foams are dispersions of large amounts of gas in a small amount of water. In true foams the
bubbles are so crowded that they deform against each other and form polyhedral volumes with
flat sides (polyhedral foams). These foams have equal pressure in each volume because there are
no curved surfaces. In a gas emulsion foam, the volume of liquid is on the same order of
magnitude as the gas volume, and the bubbles are rounded. Round bubbles with smaller
diameter have higher internal pressure (LaPlace pressure), and these bubbles collapse as the gas
diffuses into bubbles with lower pressure. Collapse of the small bubbles also decreases the total
surface area and surface energy. Eventually only large bubbles remain. Foams can be a problem
in industry when a mixing operation entrains air into a liquid containing a surfactant. Anti-foam
agents usually work by reducing the liquid viscosity (so the bubbles drain) or by displacing the
foaming agent (surfactant) from the air-liquid interface.

Solid foams with rigid walls are indefinitely stable.
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3.4 Smokes and Fogs

Solid dispersions of very small particles in a gas (smoke) are difficult to remove from the
gas. They usually do not coalesce in the gas phase because they have repulsive electrical charges
on their surfaces. Smokes of combustible materials (flour, coal dust) can be very explosive
because of their high surface area. '

Fogs are dispersions of liquid in a gas. They can form either by condensation of a vapor or
by atomizing (spraying) a liquid. They are usually unstable unless they carry some static charge.

Example 6: Stability of Colloids and Emulsions

Dr.I. M. Gud at Skruffy Peanut Butter Inc. has been charged with developing a more stable
peanut oil/water emulsion for Skruffy's leading product. Dr. Gud knows his surface chemistry
well and therefore he knows that he must prepare oil droplet diameters smaller than 0.1 micron
so that the electrostatic charge can (at least in principle) keep the oil droplets from coming
together and agglomerating. Particle size measurements on his latest preparation indicate an
average oil droplet size of 0.05 micron. Measurements of surface tension with a Wilhelmy plate
don't work out because the emulsion is too sticky. Fortunately, data from a titration calorimeter
provide a reliable determination of AGg of -47 J/liter for the formation of the emulsion.

Dr. Gud is excited with these results and asks you (his new research assistant) to determine
(a) the interfacial area of the emulsion, (b) the interfacial energy, and (c) whether the emulsion is
stable (he wants your opinion based on the results).
Answer:
a. Interfacial area:

Basis: 1 liter of oil phase of the emulsion; Approach: determine S/V in terms of r

V=4/3n® and S = 4mr?
SIV = (42 @/3ndy =3/r or S=3V/r
S =3V/r=3(1000 cm3)/[(5x10¢ cm)] = 6.00 x 108 cm? = 6.00 x 104 m?/liter

b. Interfacial energy:

v=AG/AA = (-47 J/liter)/(6.00 x 10* m?¥/liter) = -7.8 x 10-4 J/m?

c Stability?  Since AG is negative, formation of the emulsion is favored;

thus the emulsion should be stable, but just barely. It should not separate like your Mom’s

food storage peanut butter than has an oil layer on top after 15 years in the basement.
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