Chemical Engineering 412

Introductory Nuclear Engineering

Exam 1 Review

Chapter 1 - Fundamentals

- Nuclear units
- Elementary particles/particle physics
- Isotopic nomenclature
- Atomic weight/number density
- Chart of nuclides
- Mass energy equivalency

Chapter 2 – Quantum Mechanics

- Special Relativity time, length, mass changes
- Relativistic mass/momentum/energy relations
- Particle-wave duality
- Schrödinger's wave equation
- Heisenberg's uncertainty principle

Chapter 3 – Nuclear Models

- Nuclear energy states
- Liquid Drop Model
- Nuclear mass equation
- Shell Model
- Nuclear stability
- Binding energy/mass excess
- Modern Nucleus concepts

Chapter 4 – Nuclear Energetics

- Terminology
- Mass defect/BE
- Nuclear reactions
- Conserved quantities for various situations (not all the same!)
- ****Q-Value**** (know how to calculate for ALL reactions)
 - Know how to deal with charge
 - Know how to deal with excited nuclei
 - Know how to deal with electrons/binding energy of electrons

Chapter 5 – Nuclear Decay

- Conservations
- Decay mechanisms distinguishing features, Q values, energy/momentum balances
- ***Energy Diagrams***
- Alpha/Beta particle energy distribution
- Decay Constant
- Half-Life

Activity

Chapter 5 – Nuclear Decay (cont)

- Parallel/Series Decay Routes
- Decay Chains
- Solutions to decay chain equations Secular Equilibrium
- Radionuclides in nature
- Carbon 14 dating
- Other isotopic dating methods
- Three component decays

Isobars and most stable masses

Chapter 6 – Binary Nuclear Reactions

- Definitions
- Types of binary reactions
- Reaction Mechanisms
- Kinematics (scattering example)
- Threshold Energy
- Neutron Reactions
- Neutron Scattering/slowing
- Neutron Energy Spectrums

Lethargy

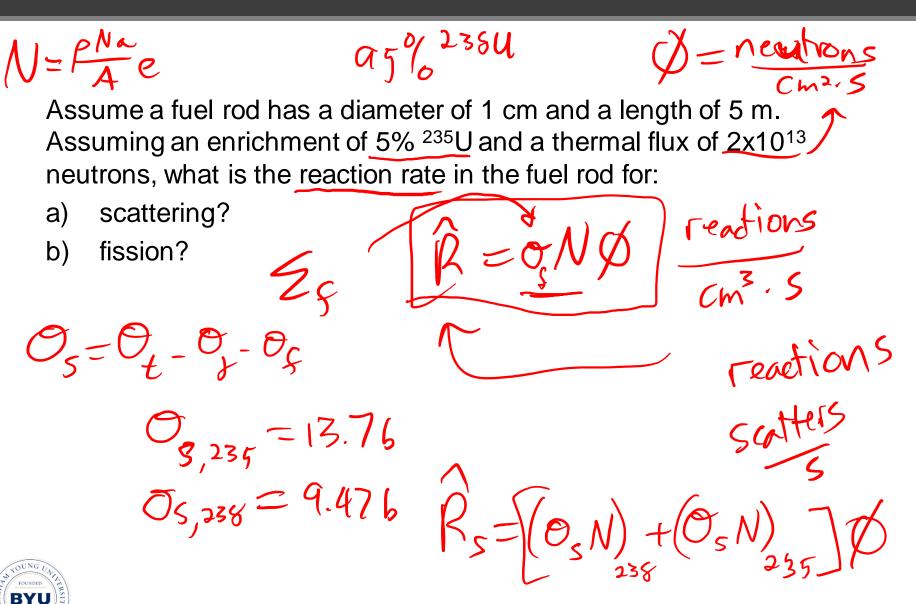
Chapter 6 – Binary Nuclear Reactions (cont.)

- Neutron capture vs. slowing
- Fission reactions
- Emitted/recoverable fission energy
- Critical energies for fission
- Fertile vs. fissile vs. fissionable
- Fission product distribution
- Prompt vs. delayed neutrons
- Fission steps/timeline

Chapter 7 – Radiation Interactions with matter

10

- Linear Interaction Coefficient (micro vs. macro)
- Cross section (micro vs. macro)
- Attenuation in Material
- Derivation of material interaction
- Buildup factor
- Mass Attenuation Coefficient
- Energy dependence of cross sections


Cross section Trends

Chapter 7 – Radiation Interactions ¹¹ with matter (cont.)

- Cross Section of mixture
- Total intensity/flux
- Neutron flux
- Time/space/position dependence of flux
- Fluence
- Uncollided flux transmission
- Thermal vs. fast neutrons
- Photon Interactions types, trends, energies, cross sections
- Charged Particle interactions
- Stopping Power (collision vs. radiative)

12

In order to start up a fission reactor, 1 cm³ of this rod must reach a neutron flux of 1×10^{12} neutrons/cm²/s. Assuming that an isotropic neutron source is 1 meter away from the 4 cm thick iron reactor vessel, and that there is 8 cm of water between this rod and the vessel wall, what is the required source intensity to start this reactor? (Hint, use fission cross section, rather than the total for the ²³⁵U) Jacoom vessel water fuel $= \Sigma_{\varsigma}$

- The Radionuclide ⁴¹Ar decays by β⁻ emission to an excited level of ⁴¹K that is 1.293 MeV above the ground state. What is the maximum kinetic energy of the emitted β⁻ particle?
- What makes this the maximum energy?

Solution

Q Equation

 $Q_{\beta_{-}} = \{M(_{18}^{41}Ar) - [M(_{19}^{41}K) + E^*/c^2]\}c^2$ $[40.9645008 - 40.9618259]^*931.5 - 1.293 \text{ MeV}$ = 1.199 MeV

B) Because an antineutrino is also released,
which carries away some energy – this
maximum is when the antineutrino has zero

- What is the probability of producing ⁹¹Br in a fission reaction?
- Use fission product mass distribution chart:

• What is the amount of thermal neutrons that are absorbed in water per cm³ over 1 hour in a fission reactor if the thermal flux is $2.2*10^{16}$ neutrons/cm²/s? ($\Sigma_a = 0.0197 \text{ cm}^{-1}$)

• 1.56*10¹⁹ absorptions per cm³

