Chemical Engineering 412

Introductory Nuclear Engineering

Lecture 10 Nuclear Fission

Spiritual Thought

D&C 121:41-43

No power or influence can or ought to be maintained by virtue of the priesthood, only by persuasion, by long-suffering, by gentleness and meekness, and by love unfeigned;

By kindness, and pure knowledge, which shall greatly enlarge the soul without hypocrisy, and without guile—

Reproving betimes with sharpness, when moved upon by the Holy Ghost; and then showing forth afterwards an increase of love toward him whom thou hast reproved, lest he esteem thee to be his enemy;

The BIG Picture

Neutron Interactions

- Elastic scattering (n,n) collision with no reaction and no change in total kinetic energies. Energy neutral.
- Inelastic scattering (n,n') collisions with energy absorption by nucleus. endoergic
- Radiative capture (n, γ) Capture of neutron by nucleus followed by γ-ray emission. exoergic.
- Charged particle reactions (n,α) Neutron reaction to form α particles or protons. endoergic and exoergic.
- Neutron producing reactions (n,xn) Reactions with a net increase in neutrons. endoergic. (n,2n) important for ²H and ⁹Be.
- Fission (n,) forms multiple products Nucleus forms daughters. Generally exoergic.

Capture and Absorption

- Decelerating Neutrons from fission energies (2-5 MeV) to thermal energies (0.025 eV)
 - Requires many collisions
 - Smaller Nuclides
 - Risk of "capture"
- Capture occurs in "resonance energy regions" (fuel)
- Also could be absorbed by the "moderator" (water)
- Can calculate probability of capture or absorption
 - Resonance integral
 - Absorption cross-sections

How to Decelerate a Neutron

$$\alpha = \left(\frac{A-1}{A+1}\right)^2$$

collision parameter

 $\frac{\Delta E}{E} = \frac{1 - \alpha}{2}$ Lethargy; $u = \ln \frac{E_M}{E}$ E_M is an arbitrary E, usually the highest neutron energy in the system. As neutrons decelerate, u increases. $(A - 1)^2$ A + 1 α 2

$$\xi = \Delta u = 1 - \frac{(A-1)}{2A} \ln \frac{A+1}{A-1} = 1 + \frac{\alpha}{1-\alpha} \ln \alpha \cong \frac{2}{A+\frac{2}{3}}$$
$$\lim_{A \to 1} \xi = 1$$

Neutron Energies

- Fission neutrons
 - Distribution of speeds
 - 2 MeV typical
 - Interested "slowing" neutrons
 - Collisions required to slow from energy E_1 to E_2 is given by:

$$n = \frac{1}{\xi} \ln \frac{E_1}{E_2}$$

- Thermal neutrons:
 - equilibrated with the vibrating atomic nuclei at room temperature (293 K)
 - Average energy of 0.025 eV (2200 m/s)
 - Maxwellian distribution of speeds

Collision parameters

Atom	A	α	ξ	n
Н	1	0.000	1.000	18.2
H ₂ O	1, 16		0.920	19.8
D	2	0.111	0.725	25.1
D ₂ O	2, 16		0.509	35.8
Не	4	0.360	0.425	42.8
Ве	9	0.640	0.207	88.1
В	11	0.694	0.171	106.3
С	12	0.716	0.158	115.3
Ο	16	0.779	0.120	151.7
Na	23	0.840	0.084	215.4
Fe	56	0.931	0.035	515.6
²³⁸ U	238	0.983	0.008	2171.6

n values here assume a neutron slowing from 2 MeV to 0.025 eV

Neutrons Eventually Are Captured

$$n + {}^{A}_{Z}X \to \left[{}^{A+1}_{Z}X \right]^{*} \to \left[{}^{A+1}_{Z}X \right] + \gamma$$
Control rods
$$n + {}^{10}_{5}B \to \left[{}^{11}_{5}B \right]^{*} \to \left[{}^{7}_{3}Li \right] + \gamma + \alpha$$

"Fertile" isotopes form "fissile" isotopes through neutron absorption $\beta^ \beta^-$

 $\begin{array}{ccc} & \beta^{-} & \beta^{-} \\ n + \frac{232}{90}Th \rightarrow [\frac{233}{90}Th]^{*} \rightarrow [\frac{233}{90}Th] + \gamma \rightarrow & \frac{233}{91}Pa \rightarrow & \frac{233}{92}U \\ & & 22m & 27d \end{array}$

$$\begin{array}{ccc} & \beta^{-} & \beta^{-} \\ n + \frac{238}{92}U \rightarrow [\frac{239}{92}U]^{*} \rightarrow [\frac{239}{92}U] + \gamma \rightarrow \frac{239}{93}Np \rightarrow \frac{239}{94}Pu \\ & 24m & 56h \end{array}$$

Fission Reactions

 $^{235}_{92}U$ is <u>fissile</u> (undergoes fission)

 $^{238}_{92}U$ is <u>fertile</u> (converts to a fissionable isotope)

Possible outcomes of $^{235}_{92}U$ reaction with neutron

$$n + {}^{235}_{92}U \rightarrow \begin{cases} {}^{235}_{92}U + n & elastic \ scatter \\ {}^{235}_{92}U + n + \gamma & inelastic \ scatter \\ {}^{236}_{92}U + \gamma & radiative \ capture \\ {}^{236}_{92}U + \gamma & radiative \ capture \\ {}^{Y}_{H} + {}^{Y}_{L} + {}^{Y}_{1} + {}^{Y}_{2} + \cdots & fission \end{cases}$$

Fission (logarithmic) Timeline

Emitted/Recoverable Energy

TABLE 3.6 EMITTED AND RECOVERABLE ENERGIES FOR FISSION OF ²³⁵U

Form	Emitted Energy, Me V	Recoverable Energy, Me V
Fission fragments	168	168
Fission-product decay		
β -rays	8	8
γ -rays	7	7
neutrinos	12	
Prompt ν -rays	7	7
Fission neutrons (kinetic energy)	5	5
Capture γ -rays	—	3-12
Total	207	198–207

Fission Product Distribution

Product Distribution at High Energy

Delayed Neutrons

- A small fraction (<1%) of total neutron production occur seconds or minutes after scission, represented by β below. These delayed neutrons are essential to reactor control.
- Fast neutron emission alone is far too rapid to allow control.

	Fast Fission		Thermal Fission	
Nuclide	$\overline{\nu}$	β	$\overline{\overline{\nu}}$	β
$^{235}\mathrm{U}$	2.57	0.0064	$\left \begin{array}{c} 2.43 \end{array} \right $	0.0065
$^{233}\mathrm{U}$	2.62	0.0026	2.48	0.0026
²³⁹ Pu	3.09	0.0020	2.87	0.0021
$^{241}\mathrm{Pu}$		-	3.14	(0.0049)
$^{238}\mathrm{U}$	2.79	0.0148		
$^{232}\mathrm{Th}$	2.44	0.0203		-
²⁴⁰ Pu	3.3	0.0026	_	

TOUNDED BYU BYU 1875 1875 1875

Source: Keepin [1965].

Delayed Neutron Data

TABLE 3.5 DELAYED NEUTRON DATA FOR THERMAL FISSION IN ²³⁵U*

Group	Half-Life (sec)	Decay Constant (l_i, \sec^{-1})	Energy (ke V)	Yield, Neutrons per Fission	Fraction (β_i)
1	55.72	0.0124	250	0.00052	0.000215
2	22.72	0.0305	560	0.00346	0.001424
3	6.22	0.111	405	0.00310	0.001274
4	2.30	0.301	450	0.00624	0.002568
5	0.610	1.14		0.00182	0.000748
6	0.230	3.01		0.00066	0.000273
				Total Total delayed fractio	yield: 0.0158 on (β): 0.0065

*Based in part on G. R. Keepin, *Physics of Nuclear Kinetics*, Reading, Mass.: Addison-Wesley, 1965.

Neutron Energy Spectrum

Decay Heat

