Chemical Engineering 412

Introductory Nuclear Engineering

Lecture 12
Radiation/Matter Interactions I
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Spiritual Thought 2

“Sadness, disappointment, and severe challenge

are events in life, not life itself. | do not minimize how
hard some of these events are. They can extend over a
long period of time, but they should not be allowed to
become the confining center of everything you do. The
Lord inspired Lehi to declare the fundamental truth, ‘Men
are, that they might have joy.” That is a conditional
statement: ‘they might have joy.’ It is not conditional for
the Lord. His intent is that each of us finds joy. It will not
be conditional for you as you obey the commandments,
have faith in the Master, and do the things that are
necessary to have joy here on earth.”

Elder Richard G. Scott
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The BIG Picture
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Summary

e Neutron Flux
o ***Reaction Rate***
e Flux Attenuation

 *Photon Interactions*
— Photoelectric
— Compton
— Pair Production

. Range/Stopping Power
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Neutron Flux

Number of collisions per unit volume is
F(E) = X I=X/N,v

Neutron flux density is centrally important

¢(7) = N, (v

e ¢ has units of flux (neutrons/area/time)
. Called a flux
e Scalar, not a vector!
- * Varies significantly with neutron energy.



Neutron Flux

The collisions of neutrons of all energies is given by

F = J Oozi (E)p(E)dE
0

All volumetric reactions (fissions, scattering,
absorption, etc.) are proportional to ¢

R,(7) = 2;¢p(7)

For reactions other than with neutrons, the same
,m“ equation applies, with y; replacing X;



Showing All Dependencies

Flux generally depends on energy, time, and position

¢(7,E,t) = Np(7, E, )v(E)
Volumetric reaction has same dependencies
RAEt) =u@EtPF Et)=2,FEt)d(7 E,t)

Commonly, neutrons are divided into energy
groups by energy, so that within each group:

R(7,E,t)dE = X;(# E,t) (7, E, t)dE
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e What is the power generation in a 1cm?
section of U3 fuel, assuming a thermal
neutron flux of 1x104% neutrons/cm?-s?
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Fissile Nuclide Thermal Data

O'y . .
a=— capture-to-fission ratio
Of
Vv neutrons per fission
0] 0] V :
n=v he RV - neutrons per absorption
Oq o, tor l+a
TABLE 3.4 THERMAL (0.0253 e V) DATA FOR THE FISSILE NUCLIDES*
OF{J';- Of o n v
s 578.8 5311 0.0899 2.287 2.492
U] 680.8 582.2 0.169 2.068 2418
29Pu 1011.3 742.5 0.362 2.108 2.871
241py 1377 1009 0.365 2.145 2917

*From Neutron Cross-Sections, Brookhaven National Laboratory report BNL-325, 3rd ed., 1973.
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Integral values

Fissions over a defined time interval

rwo - [ [[[ [ 5:6.5.006,50 dsava
t¢,, V O

For time-independent properties (common apprx.)

F(AL) = f f f f >,(7 E)P(# E) dEAV
V 0

Where the fluence, ®(#,E, t)
)
cb(r E)=| o E t)dt = Atp(r,E,t)dt
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Uncollided Flux

In a vacuum S, . d= detector
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Uncollided Flux

Through homogeneous medium

S ;
$°(r) = 7 exp(—ur)

RO(r) = 242 exp(—pur)
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Uncollided Flux

Through homogeneous slab

S r
$°(r) = —exp(—pt) %O =0 -




Quantitative Treatment

Gamma cross sections

O,=0, +0,, +0c =0, +0,, +2£,0¢

Attenuation coefficients
H=No, = e + o, + Hec

Mass attenuation coefficients

ﬂ*:ﬁ:ﬂpe+ﬂpp+ﬂc
P P P P




Photon (y-ray) Interactions

* Photoelectric effect
— Generally decreasing absorption with increasing energy
— Indicative of elemental/nuclear structure.
— vy-ray absorbed
— Low energy products

e Pair Production
— Increasing absorption with increasing energy
— Depends on Z (happens in Coulomb field near nucleus)
— vy-ray absorbed
— Low energy products

 Compton Effect
— Generally decreasing absorption with increasing energy
— Depends on electron structure and hence Z
— vy-ray remitted
. — Small energy change
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Photoelectric effect

* Photoelectric effect
—v-ray Is absorbed
— depends on y-ray energy and Z

— electron ejection, generally from the K, L, or M
levels

— X-ray or Auger electron emission follows

— electron and x-ray/Auger emission generally
low energy compared to y-ray

— cross section designated as o, with
interactions/volume given by INg,, as usual

< — Cross section depends on Z" where n is about
4, as on following graph (2" from here)
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Photon Interactions In Lead
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Pair Production

* Creates negatron (electron) and positron
from the photon/ y-ray

 Minimum energy threshold of 1.02 MeV
E .. =2m,c?
* Product particles lose kinetic energy

(thermally) prior to recombining In
annihilation radiation

* Cross section approximately proportional
3;1"> to Z2
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Pair Production
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Compton Effect

Elastic scattering of photon by an electron

Scattered photon has nearly same energy as initial
photon (same except for rebound energy of electron)

In terms of energy

E': e
E(l-cos9)+E

e

In wavelength

A=A =2.(1-cos 9)

A=~ 2.426x10cm

m_c

~» Serious shielding problem
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Compton Effect
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Total Mass Interaction Coefficients

w/p, (cm?/g)
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lron Mass Interaction Coefficients
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o particles
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Particle Range & Stopping Power




p*/e- Stopping Power
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Electron Radiative Stopping Power

e A charged particle moving through a collection
of atoms emits photons as it is deflected in the
atomic fields. This is called Bremsstrahlung. The
computation of this effect is complex.

dE N,
(— —> p ) Z2F (E, 7)
ds
rad

e Relativistic, heavy charged particles with rest

mas M
( )
ds rad EZ m

2
(_ d_E) ~ 700 ( Me)
coll

ds
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100

Heavy frag energy (MeV)
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Fission Fragment Penetration
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