
Chemical Engineering 412

Introductory Nuclear Engineering

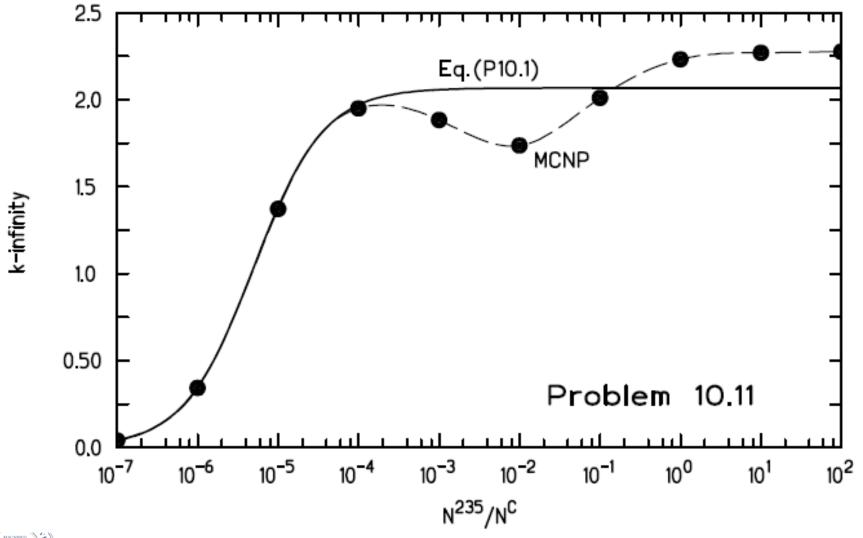
Lecture 15 Nuclear Reactor Theory II Reactor Design

Multiplication Factor

Reactor Considerations

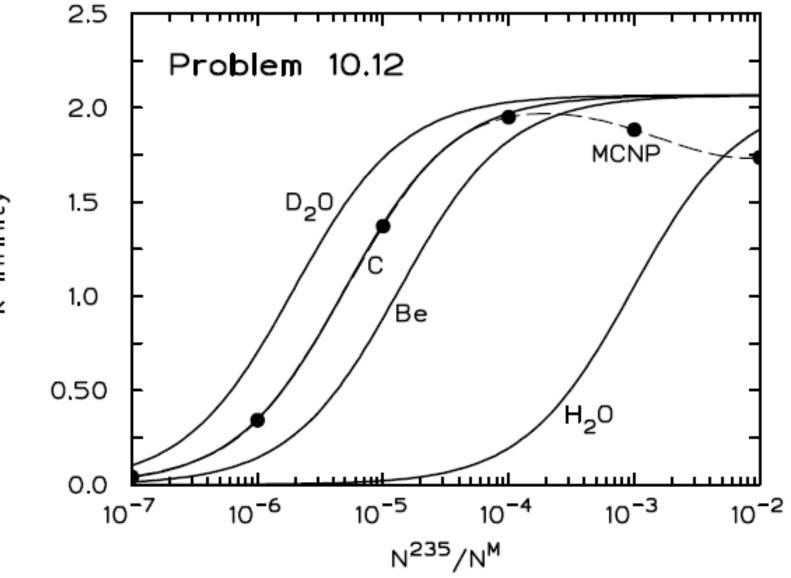
• Increase Power?

$$k_{eff} > 1$$


• Decrease Power?

$$k_{eff} < 1$$

- Most Reactors have K_{eff}>1, but cancel excess out with absorptive "poisons", which are removed with time.
- Reactors designed to not reach prompt supercriticality
- If k_{eff} increases, "feedback" effects resist increase
- What if we want to change amount of fuel or moderator?
 - Impacts various "six factor" parameters
 - Changes k_{eff}



k_{∞} variation with fuel:modifier ratio (HM/H)

k_{∞} variation with (HM/H)

k-infinity

OUNG

BYU

Neutron Cycle Parameters

Natural uranium and moderator in homogeneous reactor:

Moderator	$(N^M/N^U)_{\rm opt}$	e	η	f	p	k_{∞}
H_2O	1.64	1.057	1.322	0.873	0.723	0.882
D_2O	272	1.000	1.322	0.954	0.914	1.153
Be	181	1.000	1.322	0.818	0.702	0.759
С	453	1.000	1.322	0.830	0.718	0.787

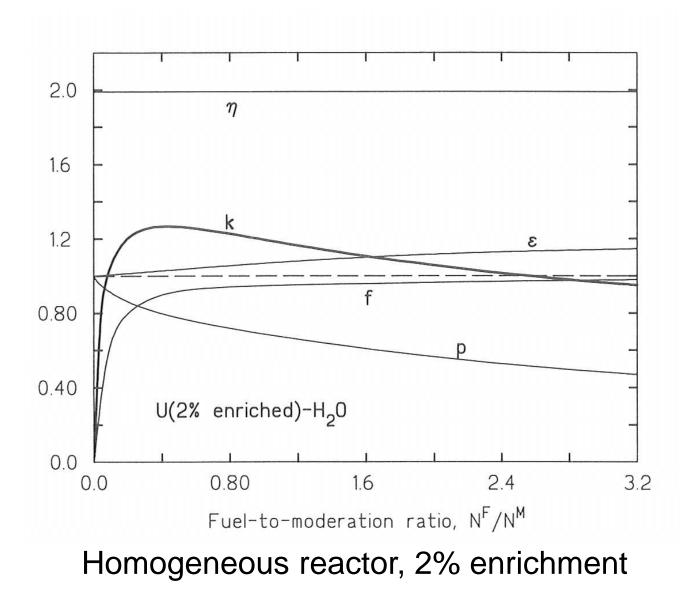
Heavy water moderation allows homogeneous reactor operation with natural uranium. Candu reactors take advantage of this in principle – though no reactor is a homogeneous reactor.

A Few Parameters

v = neutrons / fission $\alpha = \frac{\sigma_{\gamma}}{\sigma_f}$ $\eta = v \frac{\sigma_f}{\sigma_a} = v \frac{\sigma_f}{\sigma_{\gamma} + \sigma_f} = \frac{v}{1 + \alpha}$ $k = \frac{neutrons after one generation}{original neutrons}$ $C = \frac{\text{fissile atoms produced}}{\text{fissile atoms consumed}}$

Total (prompt and delayed) neutrons produced per fission

Capture to fission ratio


Neutrons released per absorption (> 1 converter, > 2 breeder)

Multiplication factor

conversion/breeding ratio (>1 breeder reactor)

Typical Parameter Variation

Core Design Factors

- Design equation $k_{eff} = \epsilon p \eta f P_{NL}^f P_{NL}^{th} = k_{\infty} P_{NL}^f P_{NL}^{th}$
- $\epsilon \approx 1$ varies to slightly over 1 as enrichment increases and with core heterogeneity
- p < 1 increases with increasing enrichment and with core heterogeneity
- Usually ϵp will be provided or can be surmised (near unity for fully enriched reactor)
- $\eta = \frac{\nu \Sigma_f^F}{\Sigma_a^F}$ depends only on type of fuel (see table 10.1 in text)
- $f = \frac{\Sigma_a^F}{\Sigma_a^F + \Sigma_a^{NF}(V^{NF}/V^F)(\phi^{NF}/\phi^F)}$ depends on enrichment and heterogeneity. For homogeneous reactors, $f = \frac{\Sigma_a^F}{\Sigma_a^F + \Sigma_a^{NF}} = \frac{\sigma_a^F}{\sigma_a^F + \sigma_a^{NF}(\frac{N^{NF}}{NF})}$

Reactor Design, cont'd

•
$$P_{NL}^{th} = \frac{1}{1+L^2 B_c^2}$$

- depends on reactor buckling/size/geometry and type of moderator
- see table 10.2 in text for L_M (and τ)
- L is $\frac{1}{2}$ distance neutron travels from time it becomes thermal until it is absorbed in an infinite core
- For homogeneous cores, $L^2 = L_M^2(1-f)$
- B_c is tabulated in tables for various shapes and is computed by solving the diffusion w/point source (Lagrange equation) PDE.
- $P_{NL}^f = \exp(-B_c^2 \tau)$
 - au is also tabulated for various moderators
 - τ = equals 1/6 the square of the distance from birth (fast neutron) to thermal
 - For dilute fuel-moderator mixtures, τ_M is good approximation for τ .

Example – Homogeneous, ²³⁹Pu

• Pure ²³⁹Pu fuel and reactor is a water-moderated($\frac{N^{NF}}{N^{F}}$ =1), water-cooled bare infinite cylinder. How large of radius for criticality?

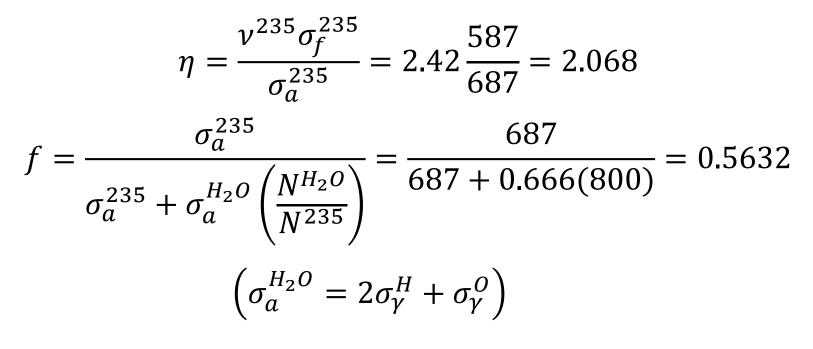
$$- \epsilon p \eta f P_{NL}^f P_L^{th} = 1 = k_{eff}$$

- $\epsilon p \approx 1$ (pure fuel makes p close to 1 and ϵ slightly greater than 1)

-
$$\eta = 2.11$$
 (Fuel property – Table 10.1)

$$- f = (749 + 271) / \left[(749 + 271) + 2 \left(0.333 + \frac{0.00019}{2} \right) \left(\frac{N^{NF}}{N^{F}} \right) \right] = 0.999$$

$$- P_{NL}^{th} = \frac{1}{1 + L^{2}B_{c}^{2}} = \frac{1}{L_{M}^{2}(1 - f)B_{c}^{2}} = \frac{1}{2.85^{2}(0.001) \left(\frac{2.405}{R} \right)^{2}}$$


$$- P_{NL}^{f} = \exp(-B_{c}^{2}\tau) = \exp\left(- \left(\frac{2.405}{R} \right)^{2} 27 \right)$$

$$\varepsilon p\eta f P_{NL}^{f} P_{L}^{th} = 1 = 1(2.11) f \frac{\exp\left(- \left(\frac{2.405}{R} \right)^{2} 27 \right)}{2.85^{2}(1 - f) \left(\frac{2.405}{R} \right)^{2}} = 68.8R^{2} \frac{N^{F}}{N^{NF}} exp(-\frac{156.6}{R^{2}})$$

Designing Size and Enrichment

$$k = \epsilon p \eta f P_{NL}^f P_L^{th} = 1$$

For fully enriched reactors, $\epsilon p \approx 1$

 $k_{\infty} = \eta f = (2.068) 0.5632 = 1.165$

Size & Enrichment, cont'd

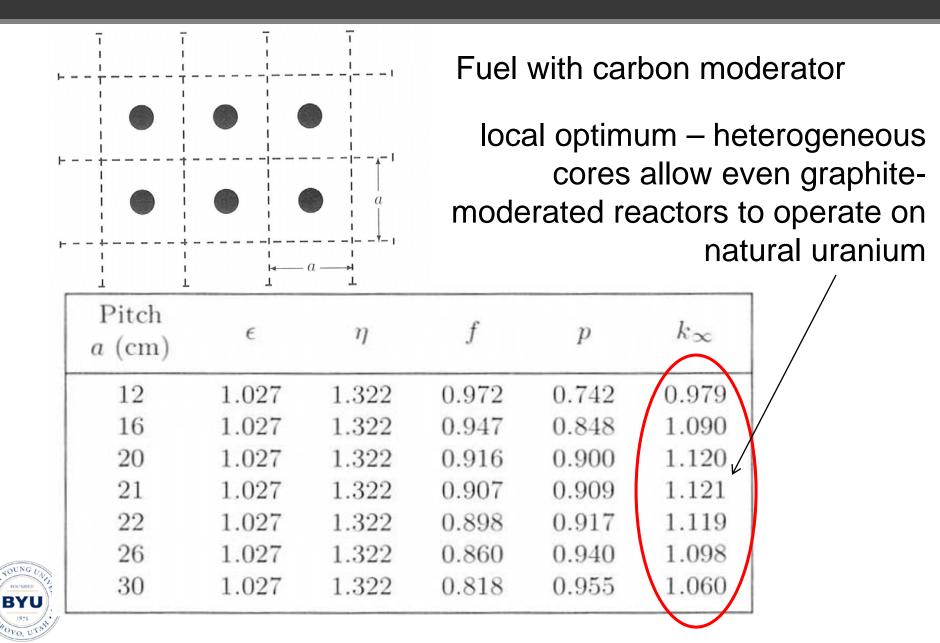
$$k_{eff} = P_{NL}^f P_{NL}^{th} k_{\infty}$$

$$P_{NL}^{th} = \frac{1}{1 + L^2 B_c^2} \qquad P_{NL}^f = \exp(B_c^2 \tau)$$

$$k_{eff} = P_{NL}^f \frac{k_\infty \exp\left(-B_c^2 \tau\right)}{1 + L^2 B_c^2}$$

 B_c^2 depends only on geometry (Table 10.6). For a cube with side *L*,

$$B_c^2 = \left(\frac{\pi}{a}\right)^2 + \left(\frac{\pi}{b}\right)^2 + \left(\frac{\pi}{c}\right)^2 = 3\left(\frac{\pi}{L}\right)^2$$



Heterogeneous vs. homogeneous

- Heterogeneous cores change the reactor parameters :
 - *p* resonance escape probability
 - increases significantly
 - neutrons slow primarily in the moderator
 - no (or controlled amounts of) highly absorbing nuclides.
 - ϵ fast fission
 - Increases slightly
 - fast neutrons are primarily surrounded by fissionable and fissile nuclides
 - f thermal utilization at fixed fuel loading (N^F/N^{NF})
 - Lower in heterogeneous reactor
 - Thermal neutron flux in fuel rod is less than that in moderator
 - η thermal fission factor
 - unchanged
 - depends only on the type of fuel
 - P_{NL}^{f} , P_{NL}^{th} Leakage probabilities
 - Unchanged
 - Depend primarily on reactor shape and size

Dependence on Design

Example 1:

A reactor designer has 15 kg each of a water/fuel (95%/5%) mixture for ²⁴¹Pu and fully enriched ²³⁵U. If he shapes each mass into a sphere can he reach criticality with either one?

