Chemical Engineering 412

Introductory Nuclear Engineering

Lecture 18
Nuclear Reactor Theory IV
Reactivity Insertions
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Spiritual Thought 2

Mosiah 2:33

33 For behold, there is a wo pronounced
upon him who listeth to obey that spirit; for if
he listeth to obey him, and remaineth and
dieth in his sins, the same

drinketh damnation to his own soul; for he
receiveth for his wages

an everlasting punishment, having
transgressed the law of God contrary to his
own knowledge.
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Reactivity Equation Solutions

¢T — A1 exp(a)lt)+ A2 exp(a)zt) General solution for single

group of delayed neutrons

dominaﬁt term approachgg 0 rapdily
as t—wo
T = i Definition of reactor or stable period
2
t General solution for single
¢T — eXp ? group of delayed neutrons
0 6 y . .
D = p Z | Reactivity equation for six
B - hical
1+ (()l 1_|_ a)I — )+ ﬂ“i group model — graphica

P solution on next page
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Reactivity Equation Solutions

T = l — l — pT — Reactor period - The time required for a
keff —1 6k Ok neutron population to change by a factor of e
ik T =Lifeti f delayed
keff =1+8k=1+— — Lifetime of delayed neutrons
T ~12.8s (U235)
T fpt pt pt T T

8k kepp— 1 keprp keprp($) T p($)

o(t) = exp (7

Remember, Flux is proportional to power....

P(t):-C P(t
Ty C-P)y=exp (%) 1= e (P((o)) ; c) T = exp (%)



1-level Model Parameters

22Th  0.0203 6.98 10.07
2331 0.0026 12.4 17.89
235 0.0064 8.82 12.72
238 0.0148 5.32 7.68

239py 0.002 7.81 11.27
py  0.0054 104.1  150.18

lam  0.0013 10 14.43
5Am  0.0024 10 14.43
42Cm  0.0004 10 14.43

IE'§c1urc:e Laboratoire de Physique Subatomique et de Cosmologie



Exploration 1

« What if we add -$0.1 to AP1000 core?
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Exploration 2

e What if we add $0.1 to AP1000 core?
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Exploration 3 9

« What if we add $0.1 to AP1000 core, then
after 10 seconds we add -$0.1?
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Kinetics

e This Is how reactor power Is controlled
— Control rods add/subtract worth

e The circumstances we’ve seen so far are
not a real, however. Why?

e Often a balancing influence is
experienced...

", Feedback Mechanisms!



Isotopic Feedbacks (slow)

e Fuel Burnup (slow)
— Decrease In reactivity

e Fuel breeding (slow)
— Increase In reactivity

* Fission product poisons (moderate—hours)
— 135Xe and *°Sm
— Decrease reactivity until decay away

 Burnable Poisons (slow)
— Decrease reactivity until transmuted away
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Temperature Feedbacks (fast)

e Atomic concentration changes
— Moderator coolant density
— Void coefficient fuel expansion

* Neutron energy distribution changes
— “*harden” spectrum with increased T
— TRIGA reactor is extreme example

 Resonance interaction changes
— Doppler — dominant feedback

e Burnable Poisons
- —Geometry changes
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Feedback Effects

« What if we add $0.1 to AP1000 core with
void feedbacks included?
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Exotic Reactors

Prompt critical (supercritical) behavior refers to reactors
- ﬂ that are critical based on prompt neutrons only and
hence have very short periods.

Reactors can be designed with inherent shutdown
i characteristics when they become supercritical. General
Atomics TRIGA reactor is an example. Such reactors
can produce short but intense pulses of neutrons (see
chart at left).
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Ramifications

For positive reactivity (increases in power), which
necessarily must be small, prompt neutron jump is
negligible, (flux essentially unchanged in the short term)

For negative reactivity (decreases in power)

— can be arbitrarily large

— prompt neutron change can be very large

— Up to 96% in the case of a scram over about 80 seconds.

Fission product decay accounts for up to 6% of total
power (for an equilibrium reactor)

— not affected by the reactivity change
— cannot reduce by more than about 93% the power output



Cluster Control Rods

Fuel rod
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http://upload.wikimedia.org/wikipedia/en/2/21/Controlrods.jpg
http://upload.wikimedia.org/wikipedia/en/2/21/Controlrods.jpg

Cruciform Control Rods

Handle

Neutron absorber
rods

Sheath

Blade

Cracks in the control rod

Coupling socket




Temperature Dependence

e o= temperature reactivity
o = dp _ d (k _1j _ izﬁ ~ 1dk feedback coefficient
dT dT\ k k“dT kdT e Ifar >0,
=  Unstable
* increases and decreases in
temperature run away to
meltdown or shutdown
without operator response.
e If oy <0,
« Stable
* Increases and decreases in
=2 temperature self regulate
Breit-Wigner describes absorption profile at 0 and the reactor stabilizes.
K but Doppler effect broadens peaks, with ¢ Different «'s for fuel/moderator

little change in area, at higher temperatures. ¢ Different timescales
2 T * Fuel is most rapid
Gy(E)_ 49 —
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Xenon (lodine, Tellurium)

Xenon-135 has a high absorption cross section (2.65x10° b in thermal
region) and is the most significant absorbing poison.

B B B B
Te 5 ¥ | 5 ¥ Xe —» °Cs — 'Ba (stable)
11sec T 6.7hr T 9.2sec 2.3x10% yr
Fission Fission Fission
dl —
—= ¢ - Al
d —— ~~
fission yield ~ natural decay
d X — _
= Al i — AAX = o X
dt = — — —

lodinedecay fission yield natural deca
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Burnable (absorbing) poisons

2500 :
Burnable poison forms products
—- = = = Noburnable poison with lower adsorption cross
Burnable poison i I
5000 Bl P sections, compensating for

accumulation of other poisons.
Boron and gadolinium oxides

1500 (gadolina) are examples.
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Typical Control Worths

TABLE 7.7 TYPICAL REACTIVITY WORTHS FOR
CONTROL ELEMENTS 3,000 MWT LIGHT-WATER
REACTOR

PWR BWR
Excess reactivity at 20°C $45 $38
No Xe or Sm k=1.41 k=1.33
Total control rod worth $11 $26

~060 clusters 140-185 rods

Fixed burnable poisons $13 $18
Chemical shim worth $26 —~
Net reactivity —$5 —$6
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