Chemical Engineering 412

Introductory Nuclear Engineering

Lecture 28 Heath Physics 1: Radiation Dose

Spiritual Thought

The BIG Picture

Summary Points

- Biological systems are most vulnerable to radiation-induced illness during replication.
 - All pre-adults, with sensitivity increasing as age decreases
 - All adult biological systems that constantly change:
 - Skin (constantly regrowing)
 - Intestinal lining (constantly repairing)
 - Blood cells/bone marrow (constantly replenishing)
 - Reproductive systems of both men and women
- Radiation illness appears first and most severely in these systems

Big Picture (cont)

- Background (natural) radiation far exceed radiation risks.
- Radiation scares people more than, for example, a car accident.
- IAEA order of top 4 health risks (for Chernobyl)
 - Chemical and other pollution in the region
 - Economic stagnation and associated collapse of public health care related to plant shutdown
 - Anxiety regarding potential radiation exposure
 - Radiation exposure

Stress associated with dislocating most people, especially the elderly, from their homes had greater health effect than the radiation exposure

Radiation Damage

Radiation burns

• deeper

ΒΥι

heal much more slowly

-Other Impacts:

@ MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED

- High latencies (leukemia, many other cancers)
- Don't know for long times

Radiation Detection

- more difficult to detect by normal senses
- Even for fatal exposures minimally felt.

Radiation = weight lifting

- Moderate weights

 Small muscle tears
 Build back stronger
- Much higher weight
 Large muscle tears
 - Strains, sprains
- Massively large weight
 - Serious injury

– Death

Radiation Effects

R

- Low moderate
 - Destroys/kills weak damaged cells
 - Build back stronger/healthier
- Higher Radiation
 - Overwhelms cell repair
 - Burns, hair loss, vomiting
- Massive Radiation
 - Damages DNA
 - Cancer

– Death

3 Big Challenges

- Emotion: Radiation illness is a highly emotional topic. It is easy to find extreme views, in both directions, from seemingly credible sources. (silent Killer)
- Lack of fundamental understanding: Radiation hormesis has a significant evidence database, but conservative linear model still used
- Unit Confusion: News reports...Rad vs
 Gray vs Sv 900,000 nSv sounds HUGE!!

Environmental Impact

- Flora and fauna in and near Chernobyl has never been healthier:
 - population and diversity
 - forced evacuations removed the threat of humans
- Biolo

 magging
 magging

 biolo

 biolo
 biolo
 biolo

Radiation Illnesses

- Chernobyl results:
 - significantly under predicted thyroid cancer
 - Over predicted other cancer deaths
 - NO thyroid cancer deaths
- no observable change in leukemia
- Fundamental aspects of radiation illness remain unknown:
 - Can't prove! Why?
 - Who wants to get tested for radiation damage?
 - illness scales linearly with dose?
 - most agree it does not and most agree small doses are proportionally less significant
 - a system's ability to repair radiological damage.

Radioactivity

- Defined as decays/time
- Conventionally measured in curies, where
 1 Ci is the decay rate/radioactivity of 1 g of
 radium-226 = 3.7x10¹⁰ decays/s.
- SI unit is becquerel, where 1 Bq = 1 decay/s
- 1 Ci = 3.7x10¹⁰ Bq = 37 GBq

Exposure Definition

- Units (Conventional and SI)
 - Exposure
 - Pertains to gamma rays (x-rays) outside the body, which ionize air and biological systems (such as humans)

$$\mathbf{x} = \frac{\Delta q}{\Delta m} = \frac{\text{sum of total ions (+ \& -)}}{\text{mass}}$$

- Conventional unit = Roentgen (R) = 2.58x10⁻⁴
 coul/kg = 1 esu charge/cm³ air
- SI unit = exposure unit = 1 coulomb/kg of air = 3876 R

Roentgen is a measure of exposure with dimensions of charge/kg

Imparted Energy (Dose)

• Biological effects generally scale with deposited energy $\bar{c} - \Sigma E_{+} - \Sigma E_{-} \pm O$

$$\bar{\epsilon} = \Sigma E_{in} - \Sigma E_{out} + Q$$

• Absorbed dose rate

$$D \equiv \lim_{\Delta m \to 0} \frac{\Delta \bar{\epsilon}}{\Delta m}$$

- conventional unit = rad (radiation absorbed dose)
 = 0.01 J/kg = 100 erg/g; mrad is for millirad
- SI unit = gray = 1 Gy = 1 J/kg; mGy is milligray
- Absorbed dose <u>rate</u> = D = Gy/s, mrad/hr, etc.
 Gray or rad is a measure of dose with dimensions energy/mass

Effects of absorbed Doses

Organ/Tissue	Endpoint	D_{50} (Gy)	$D_{\mathbf{th}}(Gy)$
skin	erythema moist desquamation	$6\pm 1 \\ 30\pm 6$	$\begin{array}{c} 3\pm1\\ 10\pm2 \end{array}$
ovary	permanent ovulation supression	3 ± 1	0.6 ± 0.4
testes	sperm count supressed for 2 $\mathbf y$	0.6 ± 0.1	0.3 ± 0.1
eye lens	cataract	3.1 ± 0.9	0.5 ± 0.5
lung	death^a	70 ± 30	40 ± 20
GI system	vomiting diarrhea death	$2 \pm 0.5 \\ 3 \pm 0.8 \\ 10 \pm 5$	0.5 . 1 . 8
bone marrow	death	3.8 ± 0.6	1.8 ± 0.3

 a dose rate 0.5 Gy/h.

Kerma

- Acronym for kinetic energy of radiation absorbed per unit mass
- A concept most associated with non-charged radiation (neutrons, gamma rays).
- Sum of initial kinetic energies of all charged, ionizing particles released by indirectly ionizing radiation (neutrons, gamma rays) per unit mass.
- Same units as dose
- Easier to measure and compute
- Commonly nearly identical to dose, which is generally the most important quantity.

$$K \equiv \lim_{\Delta m \to 0} \frac{\Delta E_{tr}}{\Delta m}$$

Insufficient

- These metrics are insufficient for bio impact:
 - Dose
 - Kerma
 - Exposure
- Why?
- Biological damage varies with:
 - radiation type
 - deposition profile

Linear Energy Transfer

$$LET = \left(\frac{dE}{dx}\right)_{\text{collisions}}$$

- The linear energy transfer (LET) is a second important characteristic. It is large/high for charged or massive particles (alpha particles, neutrons) and small/low for light particles (beta and gamma).
- Neutrons and alpha particles are more damaging at the same dose than are beta and gamma particles
- These differences are referred to as different qualities.

Biological Characterization

- Relative biological effectiveness (RBE) = effect normalized to 200 keV gamma rays.
- RBE depends on tissue, biological effect, dose, and sometimes dose rate.
- More useful in scientific studies than in general radiation protection due to complexity.

Quality Factor

- A poor man's RBE
- Assigned based on average RBE behavior.
- Weight factor is appx. equiv.

TABLE 9.1QUALITY FACTOR AS AFUNCTION OF LET

LET, keV/micron	Q
3.5 or less	1
7	2
23	5
53	10
175 and above	20

TABLE 9.2QUALITY FACTORS FOR VARIOUS TYPESOF RADIATION*

Type of radiation	Q	W_R
x-rays and γ -rays	1	1
β -rays, $E_{\text{max}} > 0.03 \text{ MeV}$	1†	
β -rays, $E_{\rm max} < 0.03 {\rm MeV}$	1.7;	
Naturally occurring α -particles	10	
Heavy recoil nuclei	20	20
Neutrons:		
Thermal to 1 keV	2	5
10 keV	2.5	10
100 keV	7.5	10
500 keV	11	20
1 MeV	11	20
2.5 MeV	9	5
5 MeV	8	5
7 MeV	7	5
10 MeV	6.5	5
14 MeV	7.5	5
20 MeV	8	5
Energy not specified	10	

*Based on 10CFR20 (Q) and ICRP 60 (W_R). †Recommended in ICRP Publication 9.

Equivalent Dose

 $H = QF \cdot D$

- Quality-factor or weighting factor modified dose
- NCRP distinguished between equivalent dose (average dose in organ weighted by weighting factor) and doseequivalent (absorbed dose at a point in tissue weighted by quality factor determined from LET of radiation at that point).
- Any given tissue should have about the same response to an equivalent dose, regardless of radiation source.
- Different tissues differ in responses, even if equivalent dose is similar.

Measured in rem (roentgen equivalent man - by NRC) or sievert (SI), where 1 Sv = 100 rem.

Equivalent Rate

- Symbol is H and is given as product of dose rate and quality (dose equivalent rate)/weighting factor (equivalent dose rate).
- 1 rem effective dose has about a 0.055% chance of causing cancer, which is high. The mrem (millirem) is a more common unit and equal to 10 μ Sv.
- Population dose or collection dose, H_{pop} is the dose equivalent to a group of people, measured in man/person-rems, man-Sieverts

$$H_{pop} = \int_{0}^{\infty} N(H) H \, dH$$

Example

0.7 mCi sample of ¹³⁷Cs emits 0.662 MeV gamma rays from ^{137m}Ba with a frequency of 0.845 per decay. If the source propagates through 0.5 m of water, find (a) the exposure rate, (b) the kerma rate in air, and (c) the dose equivalent rate. Linearly interpolate water data in Ap. C to find $\mu = 0.08604/$

cm – then find uncollided flux density (Eq. 7.23)

$$\phi^{0} = \frac{S_{p} \exp -\mu r}{4\pi r^{2}} = \frac{(0.0007 \ Ci) \left(3.7 \times 10^{10} \frac{decays}{Ci}\right) \left(0.845 \frac{\gamma s}{decay}\right) \exp -0.08604 \times 50}{4\pi (50 \ cm)^{2}}$$

et= 9.433 1/(cm² s)

Exposure Rate

Linearly interpolate the interaction data for air in Ap. C for E=0.662 MeV to get $\left(\frac{\mu_{en}}{\rho}\right)_{air} = 0.02931$

Eq. 9.9

S

$$\dot{X} = 1.835 \times 10^{-8} E\left(\frac{\mu_{en}}{\rho}\right)_{air} \phi^0$$

 $= (1.835 \times 10^{-8})(0.662)(0.02931)(9.433) = 3.36 \times 10^{-9}R$

$$= 12.1 \mu R/h$$

Kerma rate in air

Linearly interpolate the interaction data for air in Ap. C for E=0.662 MeV to get $\left(\frac{\mu_{tr}}{\rho}\right)_{air} = 0.02937$ Eq. 9.5 $\dot{K} = 1.602 \times 10^{-10} E\left(\frac{\mu_{tr}}{\rho}\right)_{air} \phi^0$ $=(1.602 \times 10^{-10})(0.662)(0.02937)(9.433) = 2.94 \times$ $10^{-11}Gy$ S

 $= 0.106 \, \mu Gy/h$

Equivalent Dose Rate

Assume charged particle equilibrium so kerma rate is the same as absorbed dose rate, $\dot{K} = \dot{D}$. Equivalent dose is quality factor for photons (1) times the absorbed dose in tissue. Approximate tissue with water. Linearly interpolate the interaction data for air in Ap. C for E=0.662 MeV to get

$$\left(\frac{\mu_{tr}}{\rho}\right)_{water} = 0.03260$$

Eq. 9.5 & 9.10

$$\dot{H} = QF \times \dot{D} = 1.602 \times 10^{-10} E \left(\frac{\mu_{tr}}{\rho}\right)_{H_2 O} \phi^0$$
$$= 1 (1.602 \times 10^{-10}) (0.662) (0.03260) (9.433)$$
$$= 3.26 \times 10^{-11} \frac{Sv}{s} = \frac{0.117 \mu Sv}{h}$$

