Chemical Engineering 412

Introductory Nuclear Engineering

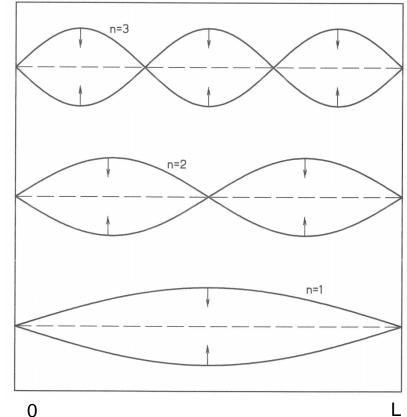
Lecture 3 Quantum Mechanics II Schrödinger's Wave equation

Schrödinger's Wave equation

$$\frac{\partial^2 \Psi(x,t)}{\partial x^2} = \frac{1}{u^2} \frac{\partial^2 \Psi(x,t)}{\partial t^2}$$

$$\Psi(0,t) = \Psi(L,t) = 0$$

Note: Solution is separable in x and t Also, $t_c = \frac{1}{v}, \frac{n\pi u t_c}{L} = 2\pi$



$$\Psi(x,t) = A \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{n\pi ut}{L}\right) \quad n = 1, 2, 3, \dots$$

Wave Equation Solution

$$v = \frac{nu}{2L}, \qquad u = \lambda v$$

$$\Psi(x,t) = \psi(x)T(t)$$

$$\Psi(x,t) = \psi(x) \sin(2\pi v t)$$
 $n = 1, 2, 3, ...$

Plug this expression into the wave equation:

$$\frac{d^2\psi(x)}{dx^2} + \frac{4\pi^2\nu^2}{u^2}\psi(x) = 0 \text{ or } \frac{d^2\psi(x)}{dx^2} + \frac{4\pi^2}{\lambda^2}\psi(x) = 0$$

$$\nabla^2\psi(x, y, z) + \frac{4\pi^2}{\lambda^2}\psi(x, y, z) = 0$$

Apply to bound electron (only one)

• Assume:

- 7

- Nucleus produces electric field on electron, V(x, y, z)
- Electron has rest mass m (=m_o)
- Electron kinetic energy = T
- Electron total energy = E
- Electron potential energy = V

•
$$T=E-V;$$
 $\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mT}} = \frac{h}{\sqrt{2m(E-V)}}$

$$\frac{h^2}{8\pi^2 m} \nabla^2 \psi(x, y, z) + V(x, y, z)\psi(x, y, z) = E\psi(x, y, z)$$

Observations on Results

- Only two possible solutions
 - 1. $\psi(x, y, z)=0$ (trivial)
 - 2. If E has discrete values; $E=E_n$, n=0,1,2,3...
 - E_n is eigenvalue, $\psi_n(x, y, z)$ is Eigenfunction
- I.E. electron can only have discrete energy levels – verified
- ψ_n is called a "wave function"
 - Complex quantity, extends over all space
 - Relative amplitude of the particle wave
 - If ψ_n ' is a solution, so is $\psi_n = \psi_n$ 'A
 - A is selected so that $\iiint \psi_n(x, y, z)\psi_n^*(x, y, z)dV = 1$

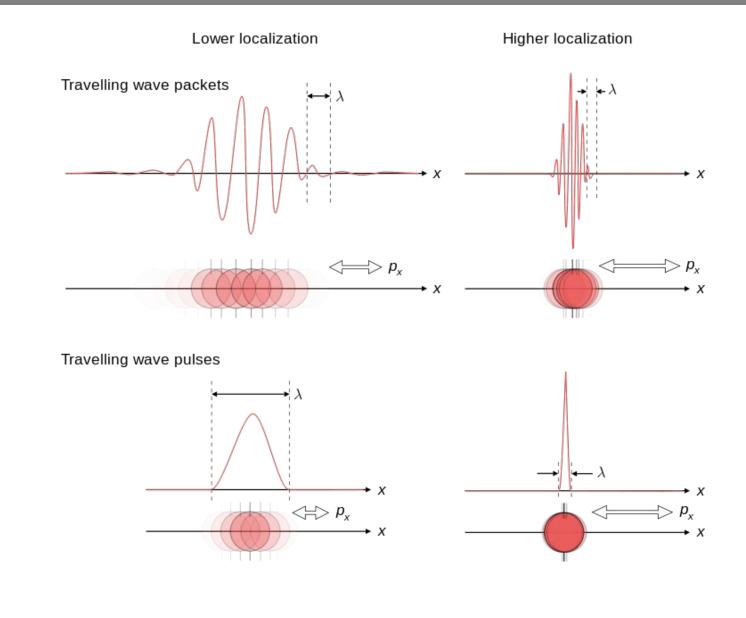
Quantum Mechanics

- Particle energy exists in discrete quantities.
- Changes occur over discrete intervals.
- Responsible for maintaining atomic structure (classical model would decay rapidly).
- Electron energy states described by orbitals and are statistical rather than deterministic. These are described by quantum states or numbers.
- Schrödinger's wave equation describes energy levels

$$-\frac{\hbar^2}{2m}\nabla^2\Psi(\vec{r},t) + V(\vec{r})\Psi(\vec{r},t) = i\hbar\frac{\partial}{\partial t}\Psi(\vec{r},t) \qquad \hbar = \frac{h}{2\pi}$$

$$-\frac{\hbar^2}{2m}\nabla^2\psi(\vec{r}) + V(\vec{r})\psi(\vec{r}) = E\psi(\vec{r}) \qquad \text{steady-state}$$

Particle-wave Duality



Uncertainty Principle

$$\Delta x \Delta p \ge \frac{h}{4\pi} = \frac{\hbar}{2} \qquad \Delta t \Delta E \ge \frac{h}{4\pi} = \frac{\hbar}{2}$$

- Position and momentum are fundamentally linked
 - Cannot determine both with arbitrary accuracy.
- Analogously, energy and time are linked
 - Energy of Particle
 - Time a particle remains in a given energy state

Quantum Mechanics (cont'd)

- Quantum particles can penetrate energy barriers that would normally be impenetrable in classical mechanics.
- There is inherent uncertainty in pairs of properties for quantum particles.
 - momentum-position
 - energy-time

Particle in a 1D Box

- Assume:
 - Zero potential in Box, Infinite Potential Outside

•
$$\psi(x) = 0$$
 at x=0 and x=a
• $\frac{d^2\psi(x)}{dx^2} + \frac{8\pi^2 mE}{h^2}\psi(x) = 0$
• $k = \frac{8\pi^2 mE}{h^2}$
 $\psi(x) = Asin(kx) + Bcos(kx)$
 $\psi(x) = 0 = Asin(0) + Bcos(0) = B$
 $\psi(x) = 0 = Asin(ka)$
 $k = \frac{n\pi}{a}, n = 1, 2, 3 ...; \quad \psi(x) = Asin(\frac{n\pi x}{a})$

Particle in a 1D Box (continued)

•
$$E = \frac{h^{2}k_{n}}{8\pi^{2}m} = \frac{h^{2}n^{2}}{8ma^{2}}$$

$$\int_{0}^{a} |\psi_{n}(x)|^{2} dx = A \int_{0}^{a} \sin\left(\frac{n\pi x}{a}\right) dx = 1$$

$$\psi(x) = \sqrt{\frac{2}{a}} \sin\frac{n\pi x}{a}, n = 0, 1, 2, 3 \dots$$

$$|\psi(x)|^{2} dx = \frac{2}{a} \sin^{2}\frac{n\pi x}{a} dx$$

$$|\psi(x)|^{2} dx = \frac{1}{a} \sin^{2}\frac{n\pi x}{a} dx$$

B

Hydrogen atom electron

Fully 3D (spherical) model a.k.a. box
V(r) = -e²/r

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\psi}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\psi}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2\psi}{\partial\phi^2} + \frac{8\pi^2\mu}{h^2}\left[E - V(r)\right]\psi = 0,$$
$$\psi(r,\theta,\phi) = R(r)\Theta(\theta)\Phi(\phi)$$
$$\frac{d^2\Phi(\phi)}{d\phi^2} = -m^2\Phi(\phi).$$
$$\frac{1}{\sin\theta}\frac{d^2\Theta(\theta)}{d\theta^2} - \frac{m^2}{\sin^2\theta}\Theta(\theta) + \beta\Theta(\theta) = 0$$
$$\frac{1}{r^2}\frac{d}{dr}\left[r^2\frac{dR(r)}{dr}\right] + -\frac{\beta}{r^2}R(r) + \frac{8\pi^2\mu}{h^2}\left[E - V(r)\right]R(r) = 0$$

Hydrogen Solution

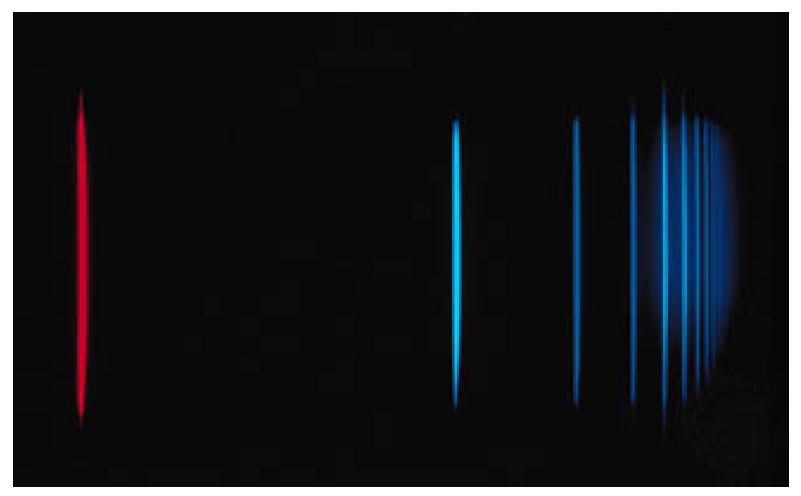
- Solution to $\frac{d^2\Phi(\phi)}{d\phi^2} = -m^2\Phi(\phi).$
 - $\Phi(\phi) = Asin(m\phi) + Bcos(m\phi)$
 - Solutions only exist if:
 - m, l, and n are constrained
 - m is integer, $m = 0, \pm 1, \pm 2, \pm 3...$ azmuthal

•
$$E_n = \frac{2\pi^2 \mu e^2}{h^2 n^2}$$
, $n = 1, 2, 3 - \text{principal}$

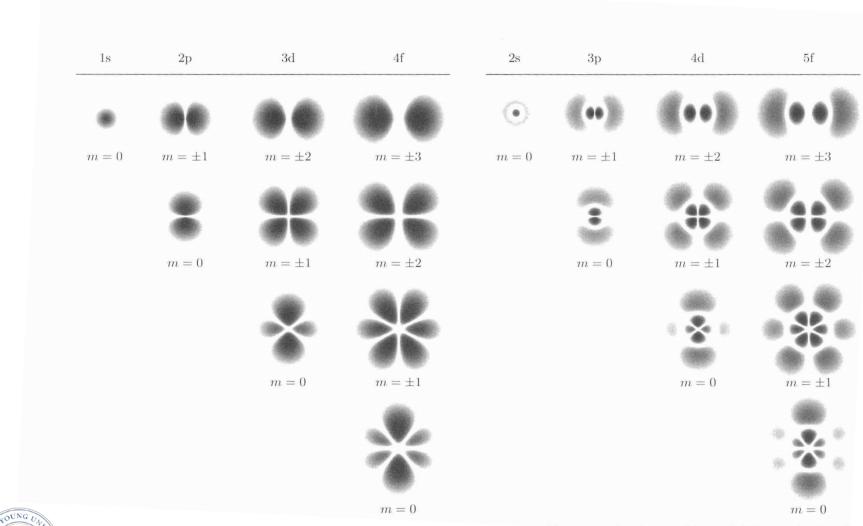
- These define electron clouds!
 - m has 2l+1 values
 - I can't be greater than n-1

 $-m_s = \pm 1/2 - added$ if S.E. is relativistically evaluated

Balmer series from hydrogen



Hydrogen Electron Density Maps



BYL

timel views of the probability density in a pla

Orbital Shapes

	s (1=0) m=0 s	p (l=1)			d (l=2)					f (l=3)						
		m=0	m=±1		m=0	m=±1		m=±2		m=0	m=±1		m=±2		m=±3	
			<i>p_x</i>	p _y	<i>d</i> _z ²	d _{xz}	d _{yz}	d _{xy}	$d_{x^2-y^2}$	f _z 3	f_{xz^2}	f_{yz^2}	f _{xyz}	$\frac{f_{z(x^2, y^2)}}{y^2}$	$\frac{f_{x(x^2)}}{3y^2}$	$\frac{f_{y(3x^2)}}{y^2}$
n=1	•															
n=2	•	8														
n=3	•	2		0	-	*	8									
n=4		3	••	0	+	*	2		••	+	*	*	*	*	•	()
n=5	•	2	••	٥	÷	*	2	()	••					•••		•••
n=6	9	2	••	٢										•••		•••
n=7		···														

Periodic Table

