Chemical Engineering 412 Introductory Nuclear Engineering

Lecture 6 Nuclear Radiation Types

Key Points

- Types of Decay
 - Name
 - Properties
 - Mathematical Descriptions
 - Caveats
- Decay Charts (KNOW HOW TO USE!)
- Nuclear Equation for Decay
- Q-Values for Decay

Decay Conservations

- Charge
- Nucleon Number
- Mass/Energy (Total Energy)
- Momentum
- Classical behavior if liberated energy is much less than rest mass energy

Decay Mechanisms

- Alpha (α)
 - Beta (+/-) (β⁺, β⁻)
 - Gamma (γ)
 - Electron capture (EC)
 - Proton (P), Deuteron (D) and Triton (T)
 - Neutron (N)
 - Internal conversion (IC)
 - Spontaneous fission (SF)

Chart of the Nuclides

Energy Diagram

number of protons

Main Radiation Types – Qualitative

- You probably know about most of these already
- So we'll go over a few more advanced concepts

Alpha Decay

- Emission of a ⁴He nucleus a (2+) charged particle.
- Reduces Z by 2, N by 2, and A by 4.
- Common in heavy (> Pb, 82) nuclides, otherwise rare.
- Alpha particles have discrete energies (quantized)
- Very highly energetic (LARGE)
 - rapidly absorbed by other material WHY?
 - generally stopped by piece of paper or outer layers of skin.

Alpha Decay Example

Beta Decay (I)

- β⁺ (positron) decay
 - occurs in proton-rich nuclei.
 - proton transforms to a neutron
 - positron and neutrino emitted
 - reduces Z and increases N by 1 without changing A.
- β^{-} (electron) decay
 - occurs in neutron-rich nuclei
 - neutron transforms to a proton
 - electron and anti-neutrino emitted
 - increases Z and decreases N by 1 without changing A.

Experimental Decay Spectrum

Beta Decay (II)

- Continuous energy spectrum (not discrete)
 - shares its energy with the neutrino.
- High-energy ionizing radiation
 - penetrates outer skin
 - Doesn't penetrate plywood or most construction materials.
- Responsible for both external and internal exposures.

β⁻ Decay Example: Chlorine-38

³⁸₁₇Cl (37.24 min) $\beta_1^-(31.9\%)$ -3810 keV γ(31.9%) $\beta_2^-(10.5\%)$ -2167 β_3 (57.6%) γ(42.4%) = 4917 0 ³⁸₁₈Ar (stable)

Positron/β⁺ Decay: Sodium-22

Gamma Emission

- Results from energy level rearrangement of nuclides
- Does not change Z, N, or A
- Exhibits discrete energy levels (quantized)
 Because quantized energy states in nucleus.
- Low energy compared to α or $\beta+/-$
 - Not an ion, thus not easily absorbed
 - penetrates deeply in skin, concrete, etc.
 - Stopped by thick lead
- Major source of external radiation exposure.

Gamma emission

No change in Z, N, or A. Energy determined by nuclear states.

Electron Capture

- Conversion of proton to neutron & neutrino by capture of inner shell electron.
- Similar to (competes with) β+:
 - Z decreases and N increases, no change in A
- Differs from β^+ :
 - Consumes an electron
- No charged particle *must* be emitted unique
- Gamma rays excited state decay

Electron Capture: Beryllium-7

Neutron Decay

- Too many protons!
- Some drip line isotopes emit a neutron
 - Daughter has one less nucleon
 - Daughter generally in an excited state, releases gamma
- Critical to reactor control
 - Find out more in a few weeks! :D

Proton Decay

- Proton emission happens at the proton drip line.
- Generally rare and relatively unimportant.

Radiation Types – Quantitative

- Main question: How to get the decay energy?
- In general, just find Q
- There are a lot of equations on the next few slides, but they're pretty much all the same (so don't worry!)

Alpha Decay

$${}^{A}_{Z}P \rightarrow \left[{}^{A-2}_{Z-2}D\right]^{2-} + {}^{4}_{2}\alpha \rightarrow {}^{A-2}_{Z-2}D + {}^{4}_{2}He$$

First look at Q for mass (mass difference)

$$\frac{Q_{\alpha}}{c^{2}} = M\binom{A}{Z}P - \left[M\binom{A-4}{Z-2}D^{2-} + m\binom{4}{2}\alpha\right]$$
$$\cong M\binom{A}{Z}P - \left[M\binom{A-4}{Z-2}D + 2m_{e} + m\binom{4}{2}\alpha\right]$$
$$\cong M\binom{A}{Z}P - \left[M\binom{A-4}{Z-2}D + m\binom{4}{2}He\right]$$

- Two approximations;
 - Neglect daughter electron Binding Energy (1st Eq.)
 - Neglect He electron Binding energy (2nd Eq.)
- ⁴He atom differs from an α particle?

two electrons – the α particle has a net 2+ charge.

Alpha Decay

$${}^{A}_{Z}P \rightarrow \left[{}^{A-2}_{Z-2}D\right]^{2-} + {}^{4}_{2}\alpha \rightarrow {}^{A-2}_{Z-2}D + {}^{4}_{2}He$$

Now look at Q for energy (kinetic energy)

$$Q_{\alpha} = E_{D} + E_{\alpha} = \frac{1}{2}M_{\alpha}v_{\alpha}^{2} + \frac{1}{2}M_{D}v_{D}^{2}$$
$$M_{D}v_{D} = M_{\alpha}v_{\alpha}$$
$$\Rightarrow Q_{\alpha} = \frac{1}{2}M_{\alpha}v_{\alpha}^{2}\left(\frac{M_{\alpha}}{M_{D}} + 1\right)$$
$$E_{\alpha} = Q_{\alpha}\left[\frac{M_{D}}{M_{D} + M_{\alpha}}\right] \cong Q_{\alpha}\left[\frac{A_{D}}{A_{D} + A_{\alpha}}\right]$$
$$E_{D} = Q_{\alpha}\left[\frac{M_{\alpha}}{M_{D} + M_{\alpha}}\right] \cong Q_{\alpha}\left[\frac{A_{\alpha}}{A_{D} + A_{\alpha}}\right]$$

Energies of alpha and daughter particles are fixed, and alpha particle energy is uniquely associated with isotope.

β^{-} Decay

$$\begin{split} & \stackrel{A}{Z}P \rightarrow \begin{bmatrix} {}^{A}_{Z+1}D \end{bmatrix}^{+} + {}^{0}_{-1}\Theta + \overline{v}_{e} \\ & \frac{Q_{\beta^{-}}}{c^{2}} = M \begin{pmatrix} {}^{A}_{Z}P \end{pmatrix} - \begin{bmatrix} M \begin{pmatrix} {}^{A}_{Z+1}D^{+} \end{pmatrix} + m_{\beta^{-}} + m_{\overline{v}_{e}} \end{bmatrix} \\ & \cong M \begin{pmatrix} {}^{A}_{Z}P \end{pmatrix} - \begin{bmatrix} M \begin{pmatrix} {}^{A}_{Z+1}D \end{pmatrix} - m_{e} \end{bmatrix} + m_{\beta^{-}} + m_{\overline{v}_{e}} \end{bmatrix} \\ & = M \begin{pmatrix} {}^{A}_{Z}P \end{pmatrix} - M \begin{pmatrix} {}^{A}_{Z+1}D \end{pmatrix} \quad \text{ground-state daughter} \qquad \beta^{-} \text{decay} \\ & \beta^{-} \text{decay} \\ \\ & \frac{Q_{\beta^{-}}}{c^{2}} = M \begin{pmatrix} {}^{A}_{Z}P \end{pmatrix} - M \begin{pmatrix} {}^{A}_{Z+1}D \end{pmatrix} - \frac{E^{*}}{c^{2}} \quad \text{excited-state daughter} \\ & E_{\beta^{-},\max} = \left(\frac{M_{D}}{M_{D} + M_{e}} \right) Q_{\beta^{-}} \cong Q_{\beta^{-}} \end{split}$$

- specific particle energies cannot be determined
- continuous range of energies with a defined maximum value.

β⁺ or Positron Decay

$$\begin{split} {}^{A}_{Z}P \rightarrow \begin{bmatrix} {}^{A}_{Z-1}D \end{bmatrix}^{T} + {}^{0}_{+1}e + v_{e} \\ \\ \frac{Q_{\beta^{-}}}{c^{2}} &= M\binom{A}{Z}P - \begin{bmatrix} M\binom{A}{Z-1}D^{-} + m\binom{0}{+1}e + m_{v_{e}} \end{bmatrix} \\ &\cong M\binom{A}{Z}P - \begin{bmatrix} M\binom{A}{Z-1}D + m_{e} \end{bmatrix} + m_{\beta^{+}} + m_{v_{e}} \\ &= M\binom{A}{Z}P - M\binom{A}{Z-1}D - 2m_{e} \\ &= M\binom{A}{Z}P - M\binom{A}{Z}P - M\binom{A}{Z-1}D - 2m_{e} \\ &= M\binom{A}{Z}P - M\binom{A}$$

NOUNG UAU HOUNDED BYU 1875 1900, UTA

The parent mass must exceed the daughter mass by at least $2 m_{e}$ for this to spontaneously proceed.

Neutron Decay

$${}^{A}_{Z}P \rightarrow {}^{A-1}_{Z}P^{*} + {}^{1}_{0}n \quad \frac{Q_{n}}{c^{2}} = M {\binom{A}{Z}P} - \left[M {\binom{A-1}{Z}P^{*}} + m_{n} \right]$$
$$= M {\binom{A}{Z}P} - M {\binom{A-1}{Z}P^{*}} - m_{n} - \frac{E^{*}}{c^{2}}$$

- Relatively rare
- slow (sometimes minutes)
- Makes fission reactions controllable.

Proton Decay

$${}^{A}_{Z}P \rightarrow \begin{bmatrix} A-1\\ Z-1 \end{bmatrix} D^{*}^{+} + {}^{1}_{1}p$$

$$\frac{Q_n}{c^2} = M\binom{A}{Z}P - \left[M\binom{A-1}{Z-1}D^*\right] + m_p$$

$$\cong M\binom{A}{Z}P - \left[M\binom{A-1}{Z-1}D^*\right] + m_e + m_p$$

$$= M\binom{A}{Z}P - \left[M\binom{A-1}{Z-1}D\right] + \frac{E^*}{c^2} + m_e + m_p$$

$$\cong M\binom{A}{Z}P - M\binom{A-1}{Z-1}D - M\binom{1}{1}H - \frac{E^*}{c^2}$$

