Chemical Engineering 412

Introductory Nuclear Engineering

Lecture 6
Nuclear Radiation Types




Key Points 2

e Types of Decay
— Name
— Properties
— Mathematical Descriptions
— Caveats

e Decay Charts (KNOW HOW TO USE!)
e Nuclear Equation for Decay
e -Values for Decay
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Decay Conservations

e Charge

e Nucleon Number

e Mass/Energy (Total Energy)
e Momentum

e Classical behavior If liberated energy is
much less than rest mass energy
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Decay Mechanisms

Alpha (a)

Beta (+/-) (B™,B7)

Gamma (y)

Electron capture (EC)

Proton (P), Deuteron (D) and Triton (T)
Neutron (N)

Internal conversion (IC)

Spontaneous fission (SF)



Chart of the Nuclides
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Energy Diagram
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Main Radiation Types — Qualitative

« You probably know about most of these already
« So we'll go over a few more advanced
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Alpha Decay
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Emission of a “He nucleus — a (2+) charged patrticle.
Reduces Z by 2, N by 2, and A by 4.
Common in heavy (> Pb, 82) nuclides, otherwise rare.
Alpha particles have discrete energies (quantized)
Very highly energetic (LARGE)

— rapidly absorbed by other material - WHY?

— generally stopped by piece of paper or outer layers of skin.



Alpha Decay Example
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Beta Decay (l)

e [3* (positron) decay
— occurs In proton-rich nuclel.

— proton transforms to a neutron

e positron and neutrino emitted
e reduces Z and increases N by 1 without changing A.

e [3- (electron) decay
— occurs in neutron-rich nuclel

— neutron transforms to a pl’O’[Oﬂ
e electron and anti-neutrino emitted
e increases Z and decreases N by 1 without changing A.
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Experimental Decay Spectrum

Energy spectrum of beta
decay electrons from 210,

Intensity

0 0.2 0.4 0.6 0.8 1.0 1.2
Kinetic energy, MeV

syuSource: G. J. Neary, Roy. Phys. Soc. (London), A175, 71 (1940).
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http://dx.doi.org/10.1098/rspa.1940.0044

e Continuous energy spectrum (not discrete)
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Beta Decay (ll)

— shares its energy with the neutrino.
e High-energy ionizing radiation

— penetrates outer skin

— Doesn’t penetrate plywood or most construction materials.
e Responsible for both external and internal exposures.

Energy spectrum N(E) {Mevh
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B- Decay Example: Chlorine-38
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Positron/B* Decay:. Sodium-22

B+ (89.
EC (10.10%)

1274 keV

#4Na (2.602 y)
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Gamma Emission

e Results from energy level rearrangement of
nuclides

e Does not change Z, N, or A

e EXhibits discrete energy levels (quantized)
— Because quantized energy states in nucleus.

e Low energy compared to a or 3+/-

— Not an ion, thus not easily absorbed
— penetrates deeply in skin, concrete, etc.
— Stopped by thick lead

e Major source of external radiation exposure.



Gamma emission
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No change in Z, N, or A. Energy determined by nuclear states.



Electron Capture

e Conversion of proton to neutron & neutrino by
capture of inner shell electron.

e Similar to (competes with) 3*:
— Z decreases and N increases, no change in A

e Differs from [3*:
— Consumes an electron

e No charged particle must be emitted - unique
e Gamma rays — excited state decay
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Electron Capture: Beryllium-7

iBe (53.29 d)

EC (10.52%)

EC (89.48%)
.- =861.8 keV

477.6 keV

Y (10.52%)

0 Y
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Neutron Decay

e T00 many protons!

e Some drip line isotopes emit a neutron
— Daughter has one less nucleon

— Daughter generally in an excited state, releases
gamma

e Critical to reactor control
— Find out more in a few weeks! :D
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Proton Decay

e Proton emission happens at the proton
drip line.

e Generally rare and relatively unimportant.
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Radiation Types — Quantitative

« Main gquestion: How to get the decay
energy?

 In general, just find Q

. There are a lot of equations on the next
few slides, but they're pretty much all the
same (so don’t worry!)
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Alpha Decay

/6

AP 22D +2a > 2D+ He
First look at Q for mass (mass difference)
=M(2P)-[M(24D* )+ m(ia)
(4P)=[M(22D)+ 2m, + m(2a )]
(2P)-M(22D)+ m(iHe)]

e Two approximations;
* Neglect daughter electron Binding Energy (15t Eq.)
* Neglect He electron Binding energy (2" Eq_.)

e “4He atom differs from an a particle?
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Alpha Decay

A A-2 | A-2 4
AP [42DF +2a—22D+2He

Now look at Q for energy (kinetic energy)

Q,=E,+E, :%Mavj —I—%MDV[Z)
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~Q - 1Ma\,§£'\/|a +1] Energies of alpha and
2 b daughter particles are
M, A, | fixed, and alpha particle
E, :Qa_MD M, :Qa_AD +A, energy is uniquely
- - - - associated with isotope.
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c—ﬂz - M (ZAP)— [I\/I (Z+’fD+)+ m,_ +m, ]

=M (;P)_ {[M (zﬁD)_ me]+ mﬂ_ +mg }

=M (ZAP)— M (ZﬁD) ground-state daughter f - decay
(iﬂz _ M (ZAP)_ M (Z+/1*D)_|§_2* excited-state daughter
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« specific particle energies cannot be determined
e continuous range of energies with a defined maximum

value.



3* or Positron Decay

/J“ >

BYU’ | 2 m, for this to spontaneously proceed.

A A 0
AP |, D[+ e +v,

7 =M(ZP)-[M(; 5D )+ m(2e)+m, ]

(? ) {[I\/IZ?D)+m]+mﬂ +m, }

(?P) M (z_?D)_ 2m, ground-state daughter

E*
o2 =M (QP )_ \ (Z—?D)_ 2m, — C_z excited-state daughter

E,B+ ,max = Qﬂ+

The parent mass must exceed the daughter mass by at least



Neutron Decay

PPN (sp) (e ) ]
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Relatively rare
slow (sometimes minutes)
Makes fission reactions controllable.
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Proton Decay

AP 21D +p

L -mzp)-p(eio) o,
AP)-M(2 D7)+ m, +m |
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AP)- M(g\_—llD)+C—2+ m, +m_
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M(2P)-M(42D)-M(H)
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