Chemical Engineering 412

Introductory Nuclear Engineering

Lecture 8
Nuclear Decay in Nature
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The BIG Picture
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Spiritual Thought 3

Peering into the sealing room in the Los Angeles California
Temple where she and her now-deceased husband,
Winston, were married more than 50 years ago brings
peace to Sally Smith...

“After a lifetime of being together, my dear Win and | are
now separated by a painful parting. Nevertheless, through
the Savior’s atoning sacrifice and the reality of the sealing
power of the priesthood, | feel hope—even joy—during this
trying season of my life, knowing we will one day be
together again.”

SN March 2016 Ensign — “Creating a Joyful Marriage —Together”
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Thorium Decay Chain (4n)
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Uranium Decay Chain (4n+2)
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Actinium Decay Chain (4n+3)
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4 Possible decay chains
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90 Toryun {Th) - 00 Teryum {Th) toryum zimciri
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B9 Aktinyum {Ac) o B9 Aktinyum {Ac)

B8 Radyum (Ra)

87 Fransiyum (Fr} —  neptinyum zinciri

B8 Radon [(Rn)
B85 Astatin [At]
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Element

241 740 239 238 237 236 235 234 233 232 231 230 229 22B 227 226 225 224 223 222 221 220 219 218 217 216 215 214 213 212 211 210 2009 208 207 206 205
Atom kitlesi

Mass number given by 4n (432Th), 4n+2 (438U or %34*Np) , and
4n+3 (35U or 239Pu) are near secular equilibrium. 4n+1
(“*Ac/Pu) has no step slow enough. Radioisotopes from it
(= have long since decayed and are not found in nature.


http://upload.wikimedia.org/wikipedia/commons/c/cd/Radioactive_decay_chains_diagram-tr.svg
http://upload.wikimedia.org/wikipedia/commons/c/cd/Radioactive_decay_chains_diagram-tr.svg

Carbon-14 (Organic) Dating

Living materials
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death, *C decays to N

9 ’ but 12C does not, so

Mol C = 10 Mol*“C & the ratio changes.
Mol “C > 10" Mol*C \

Assuming constant atmospheric concentration of 4C
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Carbon Dating Continued

e Atmospheric ratios of 14C to 2C is about 1.23x10-12

e Measured as *C activity per gram of (total) carbon
A1q _ Ni1g4 A14Ng

g(€)  Nip 12
* vyields 0.237 Bg/g(C) or 6.4 pCi/g(C)

Major sources of error:

Cosmic ray/magnetosphere intensity variations: 14C
Half-life fort4C of 5568 years (originally) actually 5730 yrs
3. Solar Activity/Global Temperature affects carbon

exchange between rocks, ocean, and air
4. Natural Variation in *2C (volcanos, photosynthesis, etc.)
5. Human increases in 12C
.« Fossil combustion
~/ o  Atmospheric nuclear testing
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Rock (Inorganic) Ages

_ -2 o .
Ni(t) = N1(0)e™ N initial amount of product in

N, () = N1 (0)[1 — e™*] formation.
1 Nz(t)>
t=——In(1+
M < Ny (t)
N;(t) = N;(0)e 7t Initial amount of stable

Isotope N5(t) . R(t) is

N (t) = N;(0) + Ny (0)[1 — e™] ratio of N,(t)/N5(t).

1

B N (t)
t = —Zln{l + Nl(t) [R(t) - RO]}
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Three-component Decays

X, —> X, > X,

N,(t)= N/ exp(-=At)
N (0)= NZexpl- 220)+ 2 [expl- 40)-expl- 2.1)

2

0

Ny(t)= N3 +N7[1—exp(= 4,t)] + }thlﬂi |2, (L—exp(=4t)) - 4, (L-exp(= A,t))]

2

Assumes stable third component but otherwise general.
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Three-isotope Series
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Daughter Particle Dynamics

) O 1I 2 3 4 5 5] CI 2 :1 & -:ﬁ 10
Mumber of parent half-lives Number of parent half-lives
Reactive Daughter Lethargic Daughter

« Dashed line is parent concentration

e All calculations presume O initial daughter concentration
_« Equilibrium assumption better as daughter reactivity
“evu: Increases.



Analysis of SS and Partial Equilibrium

Assumptions

Apply SS assumption to species B in the sequence

ka ka
A—->B—->C
concentrations are given by The analytical solutions to
two differential and one these reactions are as follows:
algebraic equation
dc, _ k., = exp(—k,t)
dt
dc, B - k
k CAO kB
= Cy = kA C, C
B C . 1
—exp(—k,t)
g dCC — kBCB CAO §




Comparison of Anal. Vs. Simplified

N ]
2.5 N -
: T Species Compositions (kg/k, = 0.5) :
o L T Exact Solution Steady-state Approximation i
2 L o~ —A SEREEE A (identical to exact solution) 4
= 20
c
o
e
{0
T
o 15
O
c
O
O
(4]
2 10
=
0.5
0.0
0.0
. -1
PSS Time/| kA

Y o raumoen NN
F T v e

\ o

For reaction rate coefficients k, and kg that differ by a factor of .9, errors in mass
conservation and species C & B concentrations are large.



Comparison of Anal. Vs. Simplified
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beyond the initial transient. Species C and, to a lesser extent, B are also in error.



Mole Concentration/[A],
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Comparison of Anal. Vs. Simplified
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For reaction rate coefficients k, and kg that differ by a factor of 5, errors in mass

/-) conservation and species C concentrations still persist beyond the initial transient.



Mole Concentration/[A],

/ l[:{ér\ reaction rate coefficients k, and kg that differ by a factor of 10 (or more), small errors in

Transient Equilibrium
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| essons learned

o Simplifying assumptions:
— Steady-state (SS) partial equilibrium (PE)
— Do not lead to non-changing concentrations of
species
— violate the laws of mass conservation
 Violation conseguences are not important:

— Concentrations of species involved are small (nearly
all radicals)

— Relative reaction rates differ by orders of magnitude.

* Otherwise, large errors if SS and PE
assumptions are applied
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Isobars w/ 1 Stable Isotope
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Isobars w/ 2 Stable Isotopes
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Isobars w/ 3 Stable Isotopes
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Radon Issues

Essentially all radon exposure
Is from 222Rn — primarily from
its progeny. Other isotopes
have much shorter half lives
and/or are produced in lower
guantities in natural decay.

EPA estimates that radon is
the second leading cause of
lung cancer in the US (after
smoking).

EPA recommends remediation
iIn homes with radon levels
above 4 pCi/l.

RADON-HAZARD POTENTIAL IN THE
PROVO-OREM AREA, UTAH COUNTY, UTAH

by Barry ). Solomon
UTAH GEOLOGICAL SURVEY
Public Information Series 21
November 1993
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Uranium Ore Secular Equilibrium

The radiation is virtually trapped

Uranium Ore Activity underground; exposures are only

ore grade 0.1 % U (stacked diagram)

200 1 O rozio possible if contaminated
Q o groundwater, that is circulating
— R | t_hrough the _deposit, IS used for
= o2 drinking. Radon is of no concern for
= R 222 deep deposits, though it can travel

R =226 . .
O wzo  through underground fissures, since

B v . .

W re2zem it decays before it can reach the

0,00 1 1000 1E+05 1E+C3 . Th-224 f
years [] uz= suriface.

The situation changes completely, when the deposit is mined: Radon gas
can escape into the air, ore dust can be blown by the wind, and
contaminants can be leached and seep into surface water bodies and
groundwater.
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Source: Wise Uranium Project, http://www.wise-uranium.org/rup.html


http://www.wise-uranium.org/rup.html#RN

Natural Uranium

Natural Uranium Activity

istacked diagram)
200 -
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Th-224
U-232

[ Fozio
E Bi-270 Isotopic Composition of Natural Uranium
FE-210

B rFozis U-234 U-235 U-238 Total

= Se o atom%  0.0054%  0.72%  99.275%  100%

W roz= weight% 0.0053% 0.711% 99.284%  100%

= S activity%  48.9% 2.2% 48.9% 100%
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Initially, it only contains the uranium isotopes. Within a few days, Th-231 (U-
235 series), and within a few months, Th-234 and Pa-234m (U-238 series)
grow in. The activity then remains stable for more than 10,000 years.

After this time, Th-230 and all other decay products of the U-238 series, and
Pa-231 and all other decay products of the U-235 series grow in. This could,
however only occur with residual ore concentrate not consumed for nuclear

._4.{;**- fuel production

BYU |
Source Wise Uranium Project, http://www.wise-uranium.org/rup.htmi
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