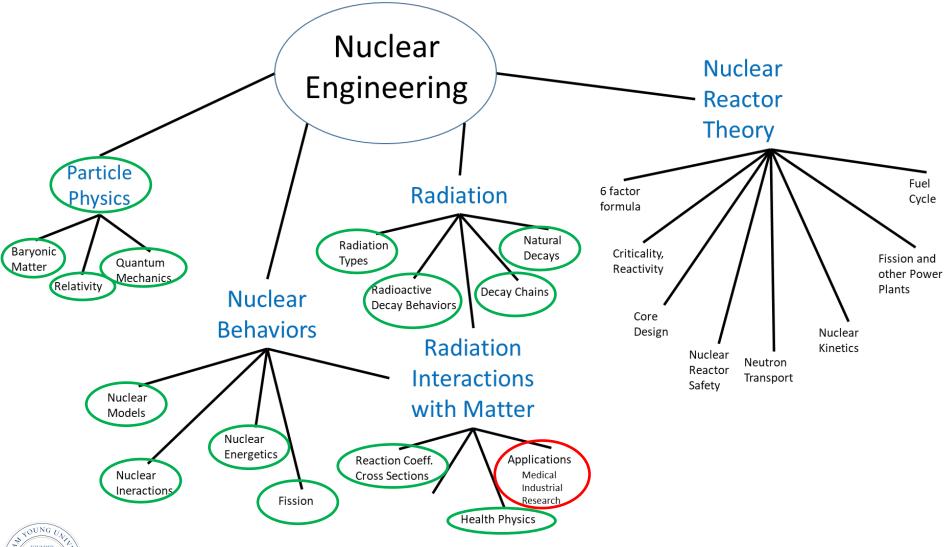
Chemical Engineering 412

Introductory Nuclear Engineering

Lecture 14 Industrial Applications

Spiritual Thought


Mosiah 27:24, 29

24. For, said he, I have repented of my sins, and have been redeemed of the Lord; behold I am born of the Spirit...

29. My soul hath been redeemed from the gall of bitterness and bonds of iniquity. I was in the darkest abyss; but now I behold the marvelous light of God. My soul was racked with eternal torment; but I am snatched, and my soul is pained no more.

Roadmap

Key Points

- Know 5 general categories of industrial/research uses of nuclear technology
- Know how to calculate tracer amounts
- Know general uses of radiation in industry
- Be able to categories uses according to 5 general categories
- Be enthusiastic about nuclear industrial applications!

Research Use

- Biological and Genetic research
- Agricultural research
- Space research
- Pharmaceutical research
- Biology Research
- Geological Research
- Energy Research
- Oceanographic
- BYU

Etc. etc. etc.

Beneficial Uses of Radiation

- Radioisotope Production
- Tracer Applications
- Materials Affect Radiation
- Radiation Affects Materials
- Particle Accelerators

Radioisotope Production

- Reactor Irradiation
 - ⁶⁰Co, ¹⁴C, ³H
- Fission Products

 ²³⁸Pu, ²⁴⁴Cm, ²⁵²Cf
- Accelerators (proton addition)
 ⁶⁵Zn, ⁶⁷Ga, ⁵⁴Mn, ²²Na, ⁵⁷Co
 - ⁹⁸Mo -> ^{99m}Tc, ¹³⁷Cs->^{137m}Ba

Industrial Radiation Applications

Industry: Products/Services	Use	Types of Sources
Manufacturing: • numerous	 Measure: thickness of metal components thickness of coatings moisture content in manufactured products 	Gamma emitters such as: • barium-133 • cobalt-60 • cesium-134 • cesium-137 • antimony-124 • selenium-75 • strontium-90 • thulium-170
Chemical Processing:various	 Measure process characteristics, such as: density thickness of coatings specific gravity level Measure equipment parameters such as: pipe thickness corrosion wear 	Gamma emitters neutron sources (for level measurement)
Construction:buildings, geophysical structures	 Measure: moisture content location of reinforcing bar (rebar) 	 Gamma emitters; neutron sources such as: americium/beryllium plutonium/beryllium californium-252
 Mineral Processing: measuring mineral levels in process streams 		Gamma emitters, such as: • americium-241 • cobalt-57 • cesium-137
Coastal Engineering:measuring environmental parameters	 Measure: levels of sediments in rivers and estuaries sediment mobilization 	Gamma emitters, such as: • americium-241 • cobalt-57 • cesium-137

Industrial Radiation Applications

Industry: Products/Services	Use	Types of Sources
Non Destructive Examination: • radiography	 Measure: weld and weld overlays castings forgings valves and components machined parts pressure vessels structural steel aircraft structures 	Gamma emitters, such as: • cobalt-60 • cesium-137 • iridium-192
Oil Refining:refinery products	 column scanning level measurement	Gamma emitters (column scanning); neutron sources (level measurement) especially americium-241/beryllium-
 Coal Fired Boilers: electricity generation Drilling / Borehole Logging: geophysical investigations Agriculture: various crops 	 Measure: ash and moisture content of coal Measure: hydrogen content Measure: soil moisture measurements 	Gamma sources such as cesium-137 with americium-241 (for ash content) Gamma emitters, especially Cobalt-60, and neutron sources americium-241/beryllium Neutron sources such as: • americium/beryllium • plutonium/beryllium • californium-252
Hydrology: • environmental assessments Consumer Products:	 Measure: soil moisture Produce an ionization current that is affected 	Neutron sources such as: • americium/beryllium • plutonium/beryllium • californium-252
smoke detectors	by the presence of smoke	

ROVO, U

Industrial Radiation Applications

Industry: Products/Services	Use	Types of Sources
Materials Processing: • blown film • cast film and sheet • rubber • vinyl • coatings & laminations • nonwovens • textiles • composites • paper • plastic pipe • film thickness • electroplating	 Measure: thickness or weight basis weight consistency moisture content 	Gamma emitters, such as: • americium-241 Beta emitters such as: • praseodymium-147 • krypton-85 • strontium-90
 Various: remote weather stations weather balloons navigation beacons and buoys 	Power sources for applications requiring small amounts of portable energy	

Radiation Source Advantages

- Advantages
 - Robust, sources are amenable to a variety of environments
 - Reliable while the detection of the emitted radiation can be sophisticated, the energy source is simple and cannot fail
 - Portable energy source not requiring other sources of energy (e.g., electricity) for operation
 - Range of energies
 - Easily transportable
 - Interact with other media in a well defined manner that facilitates various measurements
 - Do not require contact with other materials or media for use
 - Devices are typically easy to use and do not require sophisticated operator training
 - Commercially available from a large number of vendors in a variety of forms and energies
 - Mature technology

Radiation Source Disadvantages

- Disadvantages
 - Need for precautions to prevent exposure of individuals to harmful radiation
 - Energy source is always "on", thus requiring significant attention to storage
 - Loss of the source can create an environmental and health hazard
 - "Spent" sources require appropriate disposal

Industrial Uses

- Tracers movement through some process
- Materials properties through radiation property changes
- Materials properties through materials property changes
- Energy from Radioisotopes

Tracers

- leak detection
- flow measurements
- isotope dilution
- tracking of material
- radiometric analysis
- metabolic studies
- wear and friction studies
- labeled reagents
- preparing tagged materials
- chemical reaction mechanisms

material separation studies

How Much Tracer Needed?

 M_m = min mass needed CR_m = min count rate (> background, typically 0.5 s⁻¹) $T_{\frac{1}{2}}$ = half life A = atomic weight N_a = Avogadro's number ϵ = efficiency of detector (about 0.1 for gamma rays)

$$= \frac{CR_m T_1 A}{N_a \epsilon \ln 2} \qquad {}^{14}C \approx 10^{-11} \text{ g}$$

$${}^{32}P \approx 10^{-16} \text{ g}$$

 M_m

Example Problem

A typical gamma-ray detector efficiency is ~10%. A minimum count rate for this detector is 30 min⁻¹. Assuming the detector is picking up ¹⁴C emissions, what is the minimum detectable mass of ¹⁴C?

$$M_m = \frac{CR_m T_1 A}{N_a \epsilon \ln 2}$$

$$M_m = \frac{(0.5s^{-1})(1.18 \cdot 10^{11} s) \left(14\frac{g}{mol}\right)}{\left(6.024 \cdot 10^{23} \frac{atoms}{mol}\right)(0.1)(\ln 2)} =$$

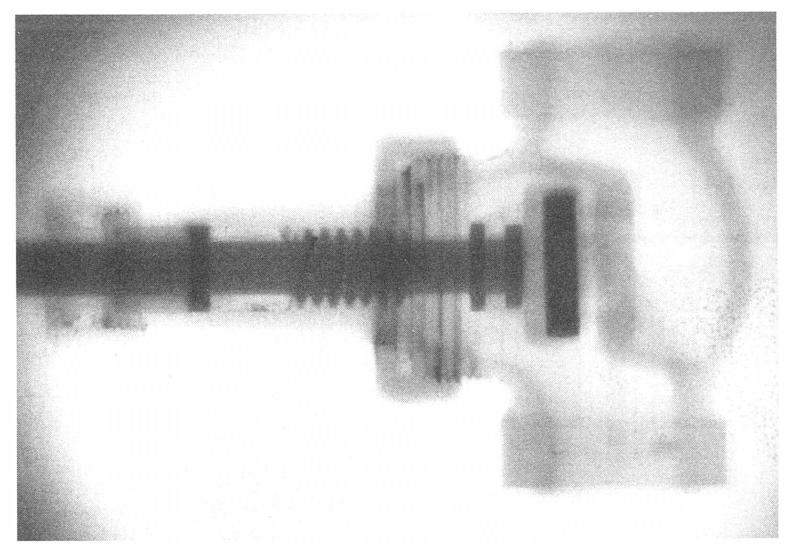
 $2 \cdot 10^{-11} g$

Other problems – isotope balances

- Mercury in Fish
- Activation of other isotopes and measuring decays (quantities)

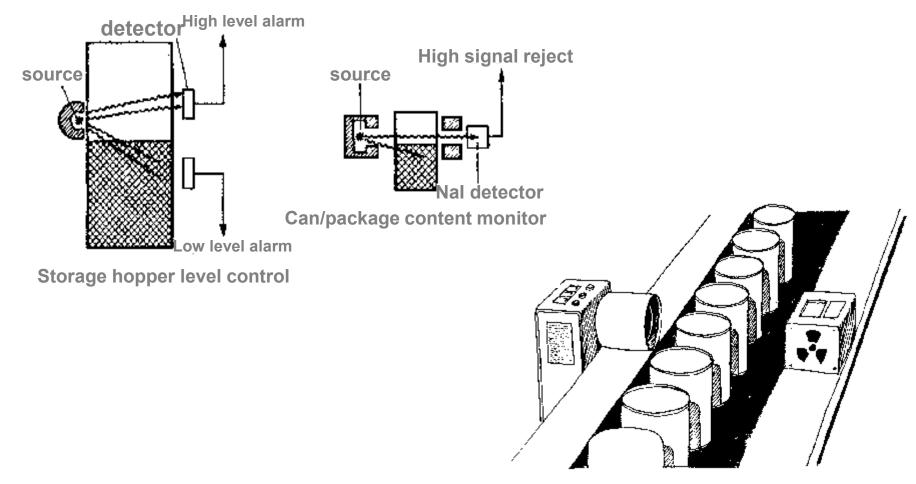
$$\frac{d^{n}I}{dt} = -\lambda^{n}I + N_{0}^{n-1}\sigma^{n-1}\phi$$

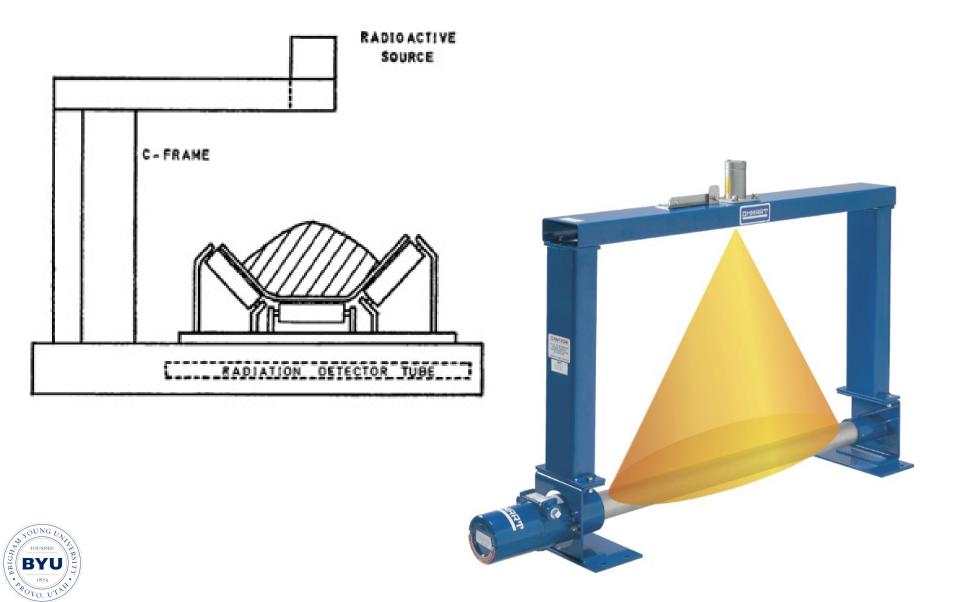
• Problems 13.1, 13.2, 13.11, 13.12


- (Use Table 13.3 for 13.11)

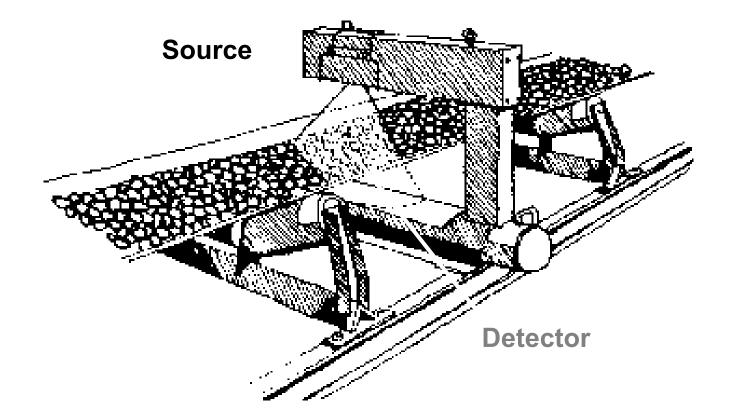
Materials Affecting Radiation

- density gauges
- thickness gauges
- radiation absorptiometry
- x-ray and neutron scattering
- liquid level gauges
- neutron moisture gauges
- x-ray / neutron radiography
- bremsstrahlung production

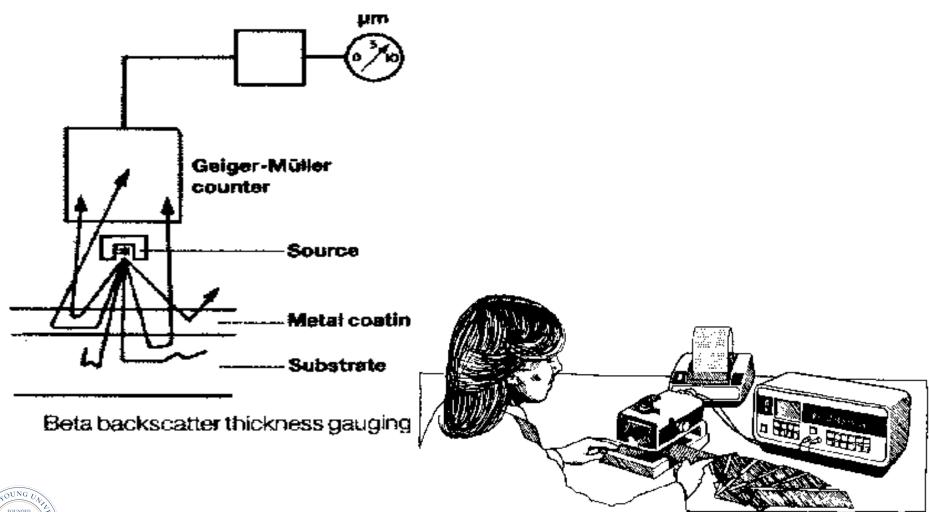

Neutron Absorption/Radiograph


Iron mostly transparent – plastic and Teflon less transparent

Level Gauge Gamma Switching Technique



Thickness Gauge Transmission Thickness Technique


Thickness Gauge

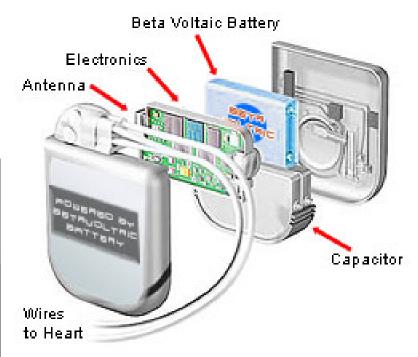
Non-contact measurement and control of liquids, solids or slurries in pipelines. Specific source size is selected for each application. This is also referred to as gamma gauging or belt weighing

Thickness Gauge Beta backscattering technique

Radiation Affecting Materials

- energy
- radioactive catalysis
- food preservation
- biological growth inhibition
- insect disinfestation
- Mossbauer effect
- radiolysis
- static elimination


synthesis


BYU

- modification of fibers
- increasing biological growth
- sterile-male insect control
- luminescence
- polymer modification
- biological mutations
- bacterial sterilization
- x-ray fluorescence

Use of Energy

- thermal power sources
- electric power sources

Food Irradiation

- Food treatment comparable to pasteurization
 - Kills pests/microorganisms without food degradation
 - Controls sprouting
- Does not make the food radioactive
- FDA Approved
- Must be labeled
- <u>https://www.omahasteaks.com/info/Produc</u> <u>t-Recall</u>

https://www.chicagotribune.com/news/ctxpm-2001-05-09-0105090264-story.html

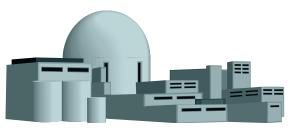
Consumer Products

- Smoke Detection Equipment
- Self-powered Lighting in Exit Signs
- Lighted Aircraft Instrumentation
- Pharmaceutical Detection
- Bomb/Weapons Detection
- Scanning and Surveillance Equipment
- Theft Deterrent Systems

Economics

America derives substantial economic and employment benefits from the use of radiation and radioactive materials:

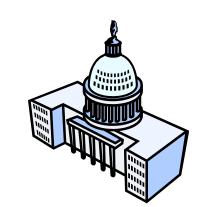
4,000,000 jobs



\$60 billion in tax revenues to local, state & federal governments

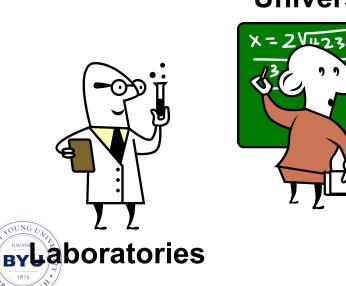
\$330.7 billion annually in total industrial sales

Economics

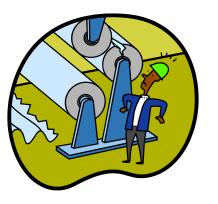

Nuclear energy's direct and indirect economic impacts in the US:

\$90 billion in total sales of goods & services

ΒΥι



\$17.8 billion in local, state & federal tax revenues


Destination

Once they are produced, they are packaged and shipped safely to users throughout the United States; users are:

Universities



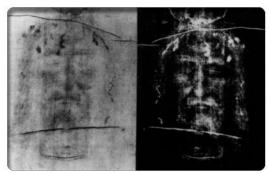
Industries

Hospitals

Scientific Research

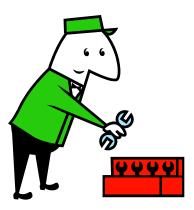
The FDA requires that all new drugs be tested for safety and effectiveness; more than 80% are tested with radioactive materials

Radioactive materials are also used in biomedical research, metabolic studies, genetic engineering and environmental protection studies


Scientific Research

Archaeologists use ¹⁴C to date artifacts containing plant or animal material

Criminal investigators use radiation to examine evidence



Museums rely on radioactive materials to verify authenticity of art objects and paintings

Industrial Uses

Automobile industry makes use of isotopes to test the quality of steel in cars

Aircraft manufacturers use radiation to check for flaws in jet engines

Mining & petroleum companies use isotop to locate and quantify geological miner deposition

Industrial Uses

Oil gas & mining companies use isotopes to map geological contours (using test wells) and mine bores and to determine presence of hydrocarbons

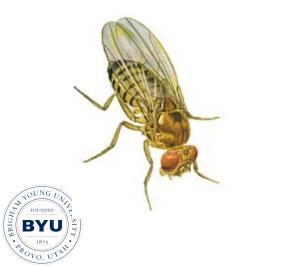
> Pipeline companies utilize radioactive isotopes to look for defects in welds

Construction crews use radioactive materials to gauge soil moisture content and asphalt density

Agricultural Uses

Hardier and more disease resistant crops (peanuts, tomatoes, onions, rice, soybeans, barley) have been developed using radioactive materials in agricultural research

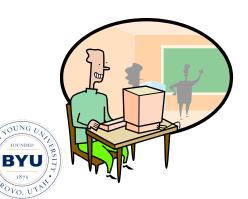
> Nutritional value, baking and melting qualities of some crops and cooking times have been improved using isotopes


Radioactive materials pinpoint where illnesses strike animals to breed diseaseresistant livestock

Agricultural Uses

Radioactive materials show how plants absorb fertilizer; this helps researchers figure where and how much to apply to crops for maximum yield

Isotopes help farmers and scientists control pests; e.g., California has used radiation sterilization since the mid-70s to control Mediterranean fruit fly infestations


Consumer Products & Services

103 US nuclear power plants provide ~20% of electricity

Smoke detectors installed in ~90% of America's homes rely on 1-2 μCi of ²⁴¹Am to monitor for smoke to signal a fire

Computer disks retain data better when treated with radiation

Consumer Products & Services

Photocopiers and plastic manufacturers use small amounts of radiation to eliminate static and prevent jamming

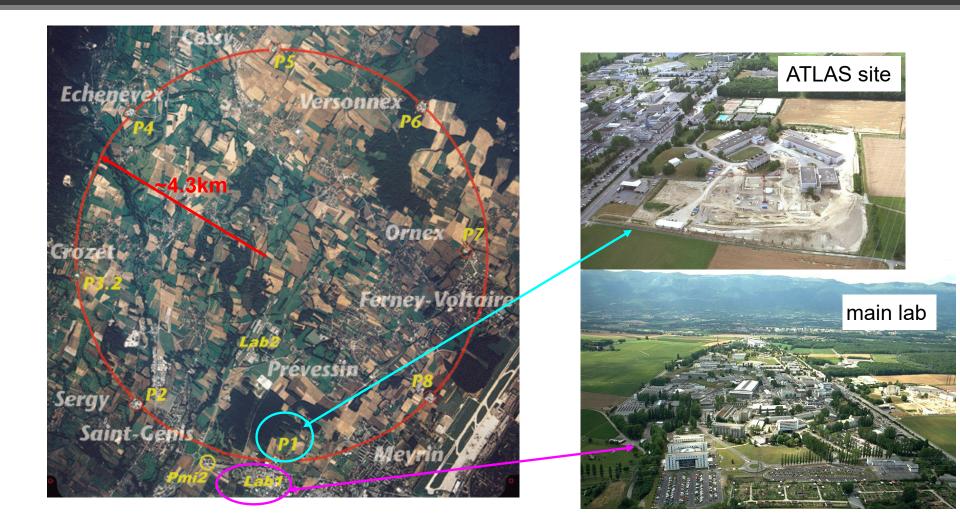
> Cosmetics, hair products and contact lens solutions are sterilized with radiation to remove irritants and allergens

Consumer Products & Services

Radioactive materials are used to sterilize medical bandages and implements as well as foodstuffs to kill pathogens

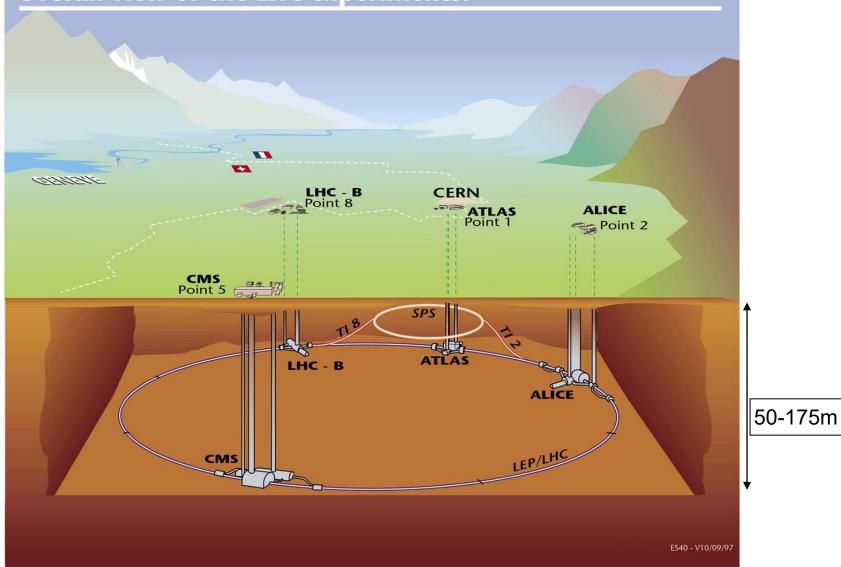
1930s Fiestaware contains uranium in the ceramic glazes

To maximize light output, some lantern mantles contain radioactive thorium nitrate

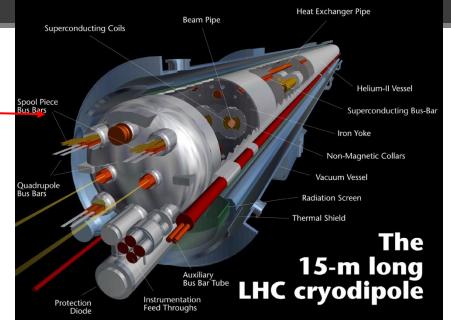

LHC is located at CERN CERN is located near Geneva Part of CERN is in France

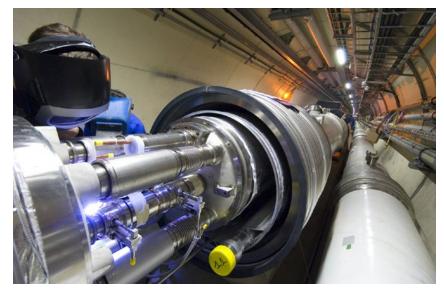
VO. UT

The LHC collides protons Center of Mass E=14 TeV ~7X Fermilab Very high luminosity ~100X Fermilab


Goal: discover Higgs+SUSY+???

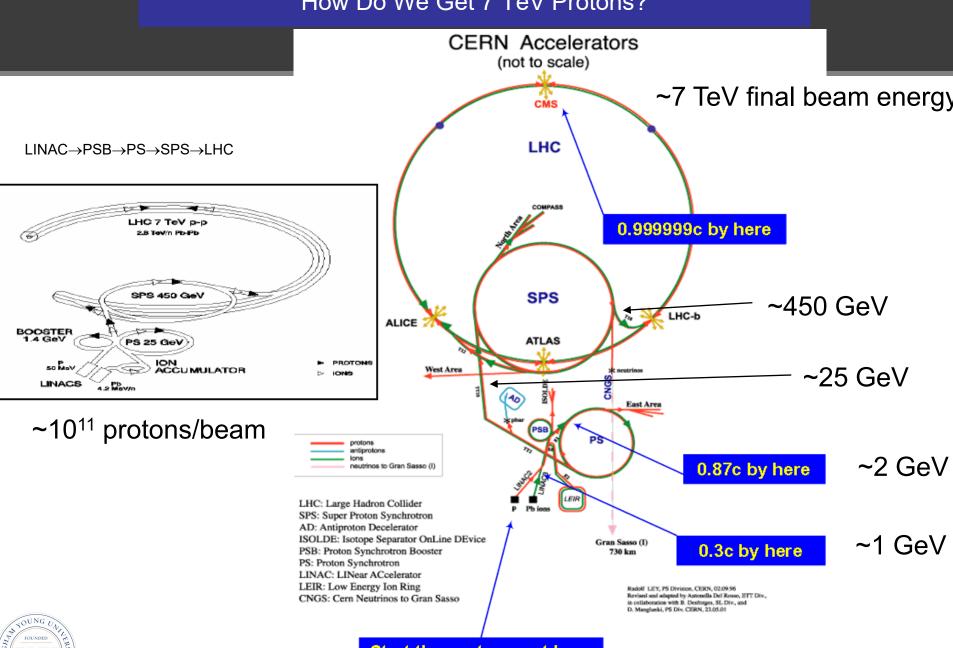
Overall view of the LHC experiments.





Magnetic field at 7 TeV: 8.33 Tesla

Operating temperature: 1.9 K Number of magnets: ~9300 Number of main dipoles: 1232 Number of quadrupoles: ~858 Number of correcting magnets: ~6208 Number of RF cavities: 8 per beam; Field strength at top energy ≈ 5.5 MV/m Power consumption: ~120 MW



Richard Kass

How Do We Get 7 TeV Protons?

BYU OVO, U

Start the protons out here