Chemical Engineering 412

Introductory Nuclear Engineering

Lecture 3 Atomic & Nuclear Models Nuclear Energetics

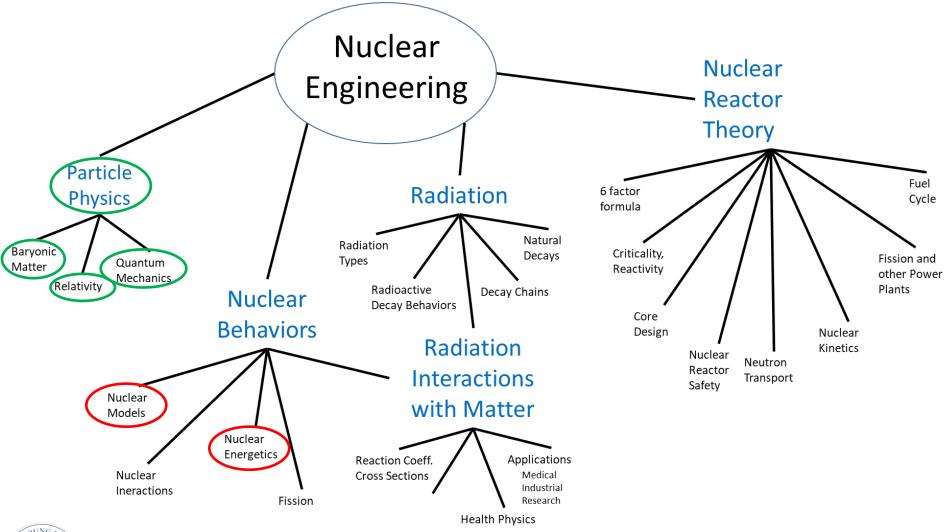
Spiritual Thought

D&C 122:7-8

7 ...know thou, my son, that all these things shall give thee experience, and shall be for thy good.

8 The Son of Man hath descended below them all. Art thou greater than he?

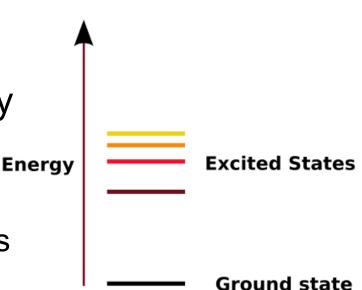
Roadmap



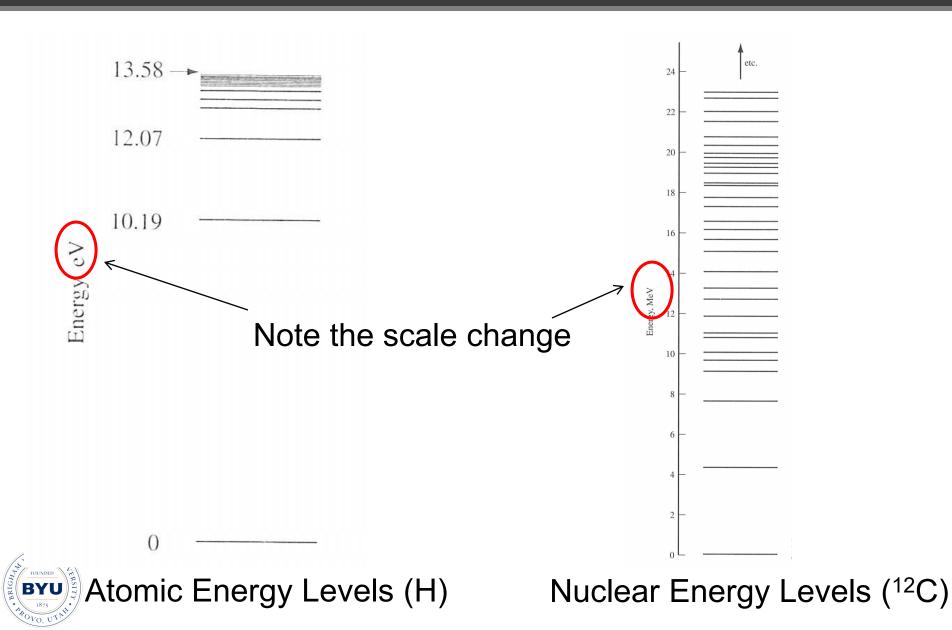
- Understand characteristics of nucleus energy states (quantized)
- Know how to approximate nuclear mass using atomic models
- Understand binding energy and mass defect and their implications
- Know how to identify, characterize, and create nuclear interaction equations
- Know how to assess energetics of nuclear interactions

Excited energy states - Electrons

- Bound atomic electrons
 - specific energy levels
 - quantum numbers
- Transitions between energy levels requires:
 - absorption or emission
 - specific wavelengths/energies
 - light (or heat or other energy forms).



Nuclei Also Have Energy Levels



Nuclear Energy Levels

- Analogous to atomic energy levels
 - Discrete orbital configurations
 - Ground states
 - Excited states (except for smallest nuclei).
- Residual strong force
 - Far stronger
 - Much shorter range (a few nucleons)
 - Higher energy levels
 - Energy changes produce Gamma rays (γ-ray)

Nuclear Energy Levels (cont)

- Energy exchanged
 - innermost electrons (internal conversion)
 - ejection from the atom
 - collapse of an outer electron to the inner orbital with x-ray emission.
- Outer to an inner electronic state:
 - Highly energetic (hence the high-energy xrays)
 - absorbed by a 2nd electron
 - 2nd electron is ejected Auger Electron

Liquid Drop Model

- Nucleus is like a liquid drop.
 - Adding more mass (nucleons) does not change the density, just the size.
 - Surface tension and mass compete for droplet stability. In a nucleus, short-range nuclear attractive forces compete with longer range coulombic repulsive forces.
 - Total mass then is

$$M = \underbrace{NM_n}_{neutron \ mass} + \underbrace{ZM_p}_{proton \ mass} - \underbrace{\alpha A}_{energy}$$

- Surface nucleons are not as tightly bound (fewer neighbors)

$$M = \underbrace{NM_{n}}_{neutron \ mass} + \underbrace{ZM_{p}}_{proton \ mass} - \underbrace{\alpha A}_{attractive} + \underbrace{\beta A^{2/3}}_{surface \ effect}$$

Liquid Drop Model (contd)

 Coulombic repulsion decreases force, increases mass

$$M = \underbrace{NM_n}_{neutron \ mass} + \underbrace{ZM_p}_{proton \ mass} - \underbrace{\alpha A}_{attractive} + \underbrace{\beta A^{2/3}}_{surface \ effect} + \underbrace{\gamma Z^2 / A^{1/3}}_{coulombic}$$

 Different numbers of neutrons and protons increase mass

$$M = \underbrace{NM_n}_{neutron\ mass} + \underbrace{ZM_p}_{proton\ mass} - \underbrace{\alpha A}_{attractive} + \underbrace{\beta A^{2/3}}_{surface\ effect} + \underbrace{\gamma Z^2 / A^{1/3}}_{coulombic} + \underbrace{\zeta (A - 2Z)^2}_{Atractive} + \underbrace{\beta A^{2/3}}_{asymmetry} + \underbrace{\gamma Z^2 / A^{1/3}}_{repulsion} + \underbrace{\zeta (A - 2Z)^2}_{asymmetry} + \underbrace{\beta A^{2/3}}_{asymmetry} + \underbrace{\gamma Z^2 / A^{1/3}}_{coulombic} + \underbrace{\zeta (A - 2Z)^2}_{Atractive} + \underbrace{\beta A^{2/3}}_{surface\ effect} + \underbrace{\gamma Z^2 / A^{1/3}}_{coulombic} + \underbrace{\zeta (A - 2Z)^2}_{Atractive} + \underbrace{\beta A^{2/3}}_{proton\ mass} + \underbrace{\gamma Z^2 / A^{1/3}}_{proton\ mass} + \underbrace{\zeta (A - 2Z)^2}_{proton\ mass} + \underbrace{\beta A^{2/3}}_{attractive} + \underbrace{\gamma Z^2 / A^{1/3}}_{coulombic} + \underbrace{\zeta (A - 2Z)^2}_{Atractive\ energy} + \underbrace{\beta A^{2/3}}_{proton\ mass} + \underbrace{\gamma Z^2 / A^{1/3}}_{proton\ mass} + \underbrace{\zeta (A - 2Z)^2}_{proton\ mass} + \underbrace{\delta / \sqrt{A}}_{proton\ mass} + \underbrace{\beta A^{2/3}}_{otractive\ energy} + \underbrace{\gamma Z^2 / A^{1/3}}_{coulombic\ repulsion} + \underbrace{\zeta (A - 2Z)^2}_{proton\ mass} + \underbrace{\delta / \sqrt{A}}_{proton\ mass} + \underbrace{\beta A^{2/3}}_{proton\ mass} + \underbrace{\gamma Z^2 / A^{1/3}}_{proton\ mass} + \underbrace{\zeta (A - 2Z)^2}_{proton\ mass} + \underbrace{\delta / \sqrt{A}}_{proton\ mass} + \underbrace{\beta A^{2/3}}_{otractive\ energy} + \underbrace{\gamma Z^2 / A^{1/3}}_{otractive\ energy} + \underbrace{\zeta (A - 2Z)^2}_{proton\ mass} + \underbrace{\delta / \sqrt{A}}_{proton\ mass} + \underbrace{\beta A^{2/3}}_{otractive\ energy} + \underbrace{\gamma Z^2 / A^{1/3}}_{otractive\ energy} + \underbrace{\zeta (A - 2Z)^2}_{proton\ mass} + \underbrace{\zeta (A - 2Z)^2}_{proton\ mass} + \underbrace{\zeta (A - 2Z)^2}_{proton\ mass} + \underbrace{\zeta (A - 2Z)^2}_{otractive\ energy} + \underbrace{\zeta$$

Nuclear Mass Equation

 $m = Zm_p + (A - Z)m_n - \frac{E_B}{c^2}$ $E_B = a_v A - a_s A^{\frac{2}{3}} - a_c \frac{Z^2}{A^{\frac{1}{3}}} - a_a \frac{(A - 2Z)^2}{A} + \frac{a_p [(-1)^Z + (-1)^N]}{2\sqrt{A}}$

(All units MeV)	Lamarsh	Least-squares	Wapstra	Rohlf	Text (Shultis)	Bertsch et al.
M _n	939.565	939.565	939.565	939.565	939.565	939.565
M _p	938.272	938.272	938.272	938.272	938.272	938.272
a_{v}	15.56	15.8	14.1	15.75	15.835	15.74063
a_s	17.23	18.3	13	17.8	18.33	17.61628
a_c	0.697	0.714	0.595	0.711	0.714	0.71544
a_a	23.285	23.2	19	23.7	23.20	23.42742
a_{p}	12	12	33.5	11.18	11.2	12.59898

These semi-empirical models work best for large A.

Example

Estimate the atomic mass of ⁴⁰Ca based on the liquid drop model.

Term	Magnitude			
	(MeV)			
volume	633.4			
surface	214.389			
Coulombic	83.51			
n-p asymetry	0			
pairing	-1.77088			

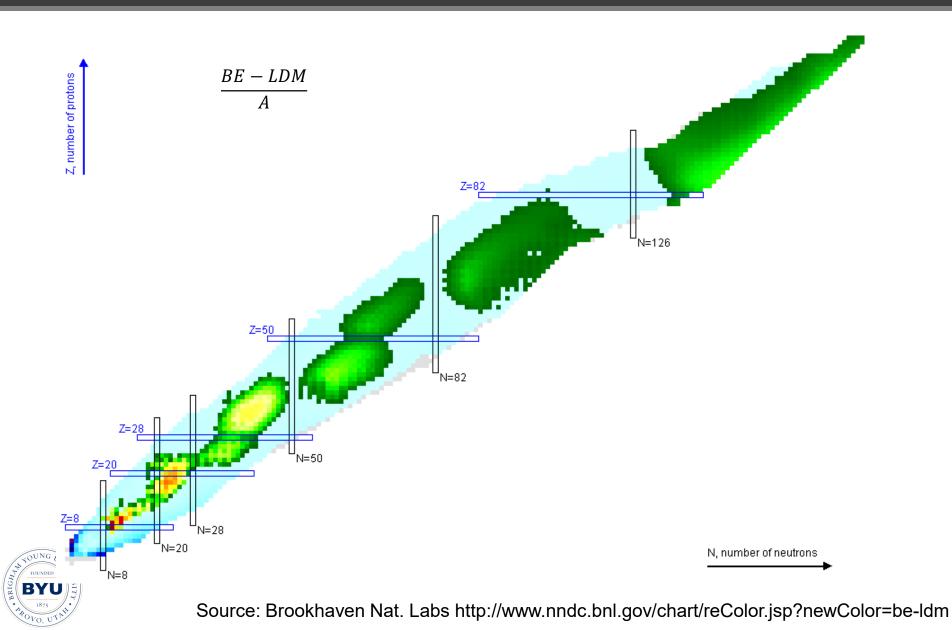
Binding energy = 633.4-214.389-83.51-0-(-1.77088)=337.27 BE/A = 337.27/40=8.431 Observed BE/A = 337.27/40=8.551

Estimated Atomic Mass = (20*939.565+20*938.272+20*0.510999-337.27)/931.5 MeV/u = 39.956 u (20*939.565+20*938.789-337.27)/ 931.5 MeV/u = 39.96759 u

Observed Atomic Mass = 39.9674 u

Atomic Mass based on sum of parts = 40.329 u

Accuracy of Liquid Drop Model



Shell Model (Quantum Model)

- Assume each nucleon acts independently of all others
- All nucleons move in a potential well that is flat inside the nucleus but increases sharply at the edge.
- Much math leads to theoretical prediction of "magic" numbers of nucleons consistent with observations. These are: 2, 8, 20, 28, 50, 82, 126
- Some lists include 14 and sometimes 6 as magic.
- These are analogous to the closed shells of electron orbitals that give rise to noble gases and apply to the neutrons and protons separately. That is, nuclei with a magic number protons or a magic number of neutrons are especially stable, and those with magic numbers of both are doubly magic and exceptionally stable.

Nuclear Stability

- Proton excess leads to decay (coulombic repulsion)
- Neutron excess leads to decay (too large nuclear force is short-range)
- Odd numbers of either neutrons or protons leads to decay (nucleons like to be paired, especially with like nucleons)
- Certain numbers of nucleons are exceptionally stable
- Neutrons easier to accommodate than protons (coulombic repulsion)
 Proton

266 (255) total stable nuclides

		Protons		
		Even	Odd	
ons	Even	159	50	
Neutrons	Odd	53	4	

Binding Energy

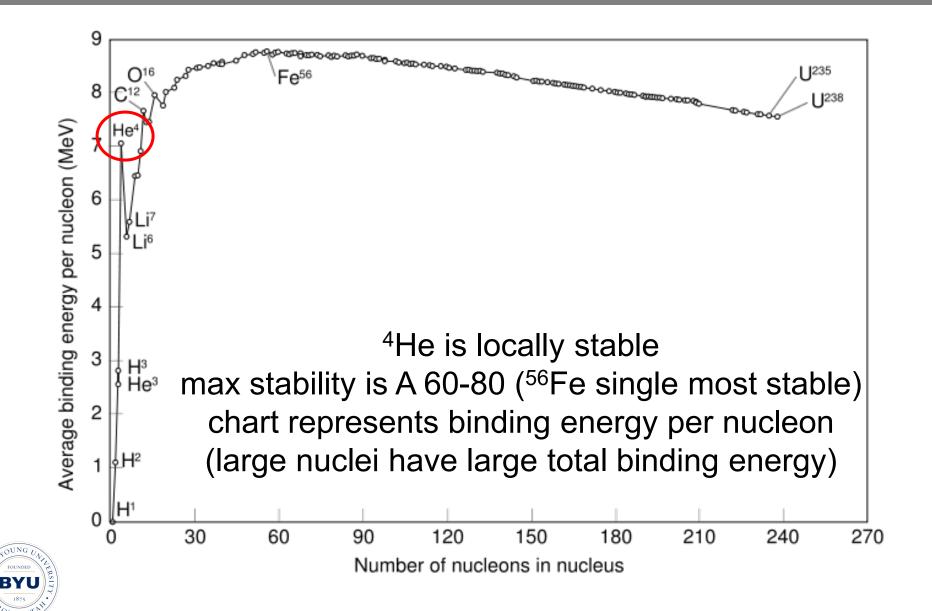
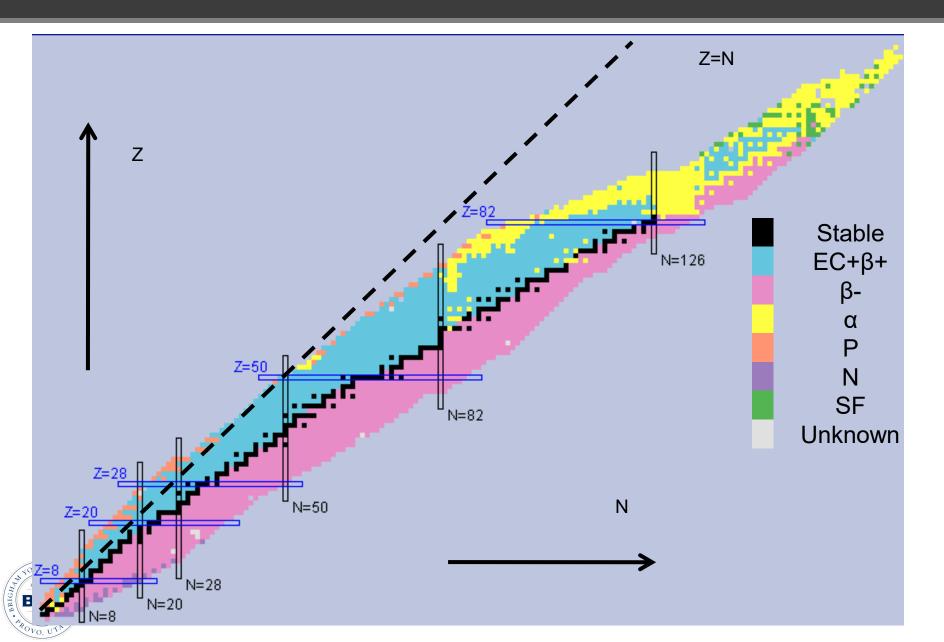
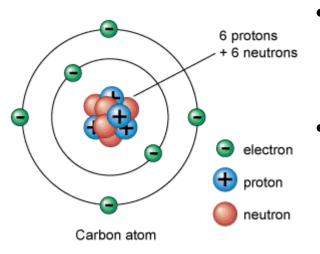


Chart of the Nuclides



Modern Nucleus Concepts



- Much smaller relative to electron shells than typically depicted (picture at left misleading).
- Includes protons and neutrons, but not as discrete particles. Pairs of protons and neutrons typically share the same physical location (as waves) but have different quantum numbers (spin number differs).
- Slight density variation with increasing distance from center.
- Not necessarily spherical.
- Measurable charge separation in many cases.

Nuclear Energetics

- Study of mass/energy changes in nucleus
 - Reactions
 - Binary (2) or ternary (rare) reactions
 - Decays (1 nucleus)
 - Stability
 - Mass Defect
 - Binding Energy/Separation Energy
- Foundational to understanding radioactive decay

Reaction Terminology

- Chemistry
 - Exothermic reactions
 - Generate heat
 - Negative heat of reaction
 - Endothermic reactions
 - Consume heat
 - Positive heat of reaction
- Nuclear chemistry
 - Exothermic = Exoergic
 - Positive Q-values

- Endothermic = Endoergic
 - negative Q-values

Not "thermal", because it's not traditional heat transfer; atomic scale with wave emission and kinetic energy

Mass Defect/Binding Energy

•
$$E=mc^2 - \Delta E = \Delta mc^2$$

- Even for Macroscopic effects, but tiny
 - 10⁻⁸ % for formation of CO₂ molecule
- Δm = mass defect
 - m = nuclear, M = atomic \rightarrow How to define M?

•
$$M(_Z^A X) = m(_Z^A X) + Zm_e - \frac{BE_{Ze}}{c^2} \rightarrow How to define m?$$

$$-\Delta m = \frac{BE}{c^2} = Zm_p + (A - Z)m_n - m\binom{A}{Z}X$$

Binding Energy

$$-BE\begin{pmatrix}A\\Z\end{pmatrix} = \left[ZM\begin{pmatrix}1\\1\end{pmatrix} + (A-Z)m_n - M\begin{pmatrix}A\\Z\end{pmatrix}\right]c^2$$

Separation Energy

$$Sn(^{A}_{Z}X) = BE(^{A}_{Z}X) - BE(^{A-1}_{Z}X)$$

Fundamental Particles

- Neutron = 1 up + 2 down quarks
 - 1.67492729(28) × 10−27 kg
 - 1.008664915(6) u
 - 939.56536 MeV/c2
- Proton = 2 up + 1 down quark
 - − 1.67262171(29) × 10−27 kg
 - 1.007276466(13) u
 - 938.27203 MeV/c2
- Neutron mass > Proton + electron
- Electron lepton
 - 9.109 382 15(45) × 10⁻³¹ kg
 - 5.485 799 09(27) × 10⁻⁴ u
 - 0.51099892 MeV/c²

Reactions

- Nuclear reactions
 - -1, 2, or 3 (rare) particles
 - Sometimes written like Chemical reactions: ${}^{4}_{2}He + {}^{14}_{7}N \rightarrow {}^{17}_{8}O + {}^{1}_{1}H$
- For single reactions this is common
- For binary nuclear reactions a more compact nomenclature is typical, ${}^{14}_{7}N(\alpha,p){}^{17}_{8}O$

Lightest nuclides in parentheses

Note: this is the first nuclear reaction detected, by Rutherford

Nuclear Conservation

- Chemical reactions
 - conserve enthalpy, elements, and total mass.
- Nuclear reactions
 - Don't conserve any of those
 - Do conserve
 - Total energy (mass + kinetic/radiative energy)
 - Nucleons (protons + neutrons)
 - Electrical charge.
 - Note *sum* of protons and neutrons (nucleons) is conserved.

– Electrons **NOT** conserved; charge is.

Parallel reactions

- Chemistry multiple possible reactions
 - Large quantities of reactants
 - Branching ratios, equilibrium, etc.
- Nuclear single nuclei at a time Statistical probabilities for various outcomes
- Example, neutron interacting with sulfur
 - $-\frac{32}{16}S(n,n)\frac{32}{16}S$ α%
 - $-\frac{32}{16}S(n,n')\frac{32}{16}S^*$ $\beta\%$ where $\beta=0\%$ if $E_n < XX$
 - $-\frac{32}{16}S(n,p)\frac{32}{15}P$ $\delta\%$ where $\delta = 0\%$ if $E_{n} < YY$
- $-\frac{32}{16}S(n,\gamma)^{33}_{16}S$ (1- α - β - δ)%