Chemical Engineering 412

Introductory Nuclear Engineering

Lecture 7
Nuclear Fission
Radiation Interactions with Matter




Spiritual Thought 2

“No man, having put his hand to the plough,
and looking back, is fit for the kingdom of
God.” When difficult things are asked of us,
even things contrary to the longings of our
heart, remember that the loyalty we pledge to
the cause of Christ is to be the supreme
devotion of our lives. Although Isaiah reassures
us it is available “without money and without
price”—and it is—we must be prepared, using
T. S. Eliot’s line, to have it cost “not less than
_.everything.”

Jeffery R. Holland
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Objectives 4

Understand mechanics and details of
Fission

Understand how radiation interacts with
Matter

Be able to calculate probabilities of
Interaction and radiation field intensities

Understand both linear interaction
coefficients and cross-sections

Be able to calculate or find u, o, and 2



Neutron Interactions

Elastic scattering (n,n) — collision with no reaction and no
change in total kinetic energies. Energy neutral.

Inelastic scattering (n,n’) — collisions with energy absorption
by nucleus. endoergic

Radiative capture (n,y) — Capture of neutron by nucleus
followed by »ray emission. exoergic.

Charged particle reactions (n,a) — Neutron reaction to form
a particles or protons. endoergic and exoergic.

Neutron producing reactions (n,xn) — Reactions with a net
increase in neutrons. endoergic. (n,2n) important for 2H and
‘Be.

Fission (n, ) forms multiple products — Nucleus forms

.. daughters. Generally exoergic.




Fission Reactions

235U is fissile (undergoes fission)

*s5U is fertile (converts to a fissionable isotope)

Possible outcomes of 233U reaction with neutron

( 235U +n  elastic scatter

Zggu R 235U +n+y inelastic scatter

A

230U +y radiative capture
Yy +Y, +y, +y,+ fission
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Emitted/Recoverable Energy

TABLE 3.6 EMITTED AND RECOVERABLE ENERGIES FOR FISSION OF U

Emitted Energy. Recoverable Energy.

Form Me V Me V
Fission fragments 168 168
Fission-product decay

p-rays 8 8

y-Tays 7 7

neutrinos 12 —
Prompt y-rays 7 7

Fission neutrons (kinetic energy)
Capture y-rays -

N
—_ N
(]

152
|

Total 207 198-207

E. =200 MeV




Fission Product Distribution
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Product Distribution at High Energy
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Delayed Neutrons

* A small fraction (<1%) of total neutron production
occur seconds or minutes after scission,
represented by f below. These delayed neutrons
are essential to reactor control.

» Fast neutron emission alone is far too rapid to

a”OW ContrOI . Fast Fission Thermal Fission

Nuclide U j]

2357y 2.57  0.0064

2337] 2.62  0.0026

239py 3.09  0.0020

241 Pu _ —

238y 2.79  0.0148

232 Th 2.44  0.0203 - -
240py 3.3 0.0026 - =

Source: Keepin [1965].



Delayed Neutron Data

TABLE 3.5 DELAYED NEUTRON DATA FOR THERMAL FISSION IN **U*

Half-Life Decay Constant Energy Yield, Neutrons Fraction
Group (sec) (l;, sec™ ) (ke V) per Fission ()

1 55.72 0.0124 250 0.00052 0.000215
2 22.72 0.0305 560 0.00346 0.001424
3 6.22 0.111 405 0.00310 0.001274
4 2.30 0.301 450 0.00624 0.002568
5 0.610 .14 S 0.00182 0.000748
6 0.230 3.01 - 0.00066 0.000273

Total yield: 0.0158
Total delayed fraction (g): 0.0065

*Based in part on G. R. Keepin. Physics of Nuclear Kinetics. Reading. Mass.. Addison-Wesley,
1965.
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Radiation Interaction with Matter

* World is awash with
radiation

* First step to
understanding
impact is knowing ; @ —>
how it interacts

* Different particles
have different
effects Y

* Derive general
terms to quantify

<= interactions n O C8: ®
e

a (@ —




Linear Interaction Coefficient

* As a particle passes through a homogeneous material
» Probability of interaction is constant per differential unit
distance traveled
* Empirically derived

__ Pi(Ax)
u; = lim

Ax—0 Ax

« u; is called the macroscopic interaction coefficient
 indicated by Z; (except for photons).

 Depends on
« Particle energy
* Reaction Type
« Scattering, absorption, fission, etc.
« energy-dependent macroscopic linear absorption coefficient
» linear fission coefficient
* linear scattering coefficient, etc.
‘BYU’ « Medium type




Total Probability of Interaction

 Interaction coefficients are divided into subcategories
* |.e. total scattering coefficient, 2,
 Linear scattering coefficients, 2
* Non-linear scattering coefficients
 Total absorption coefficient, 2,
* Neutron capture
* Fission
« QOther absorbing interactions
« Total is sum of components
« Radiation — linear attenuation coefficient
* Neutrons — Cross Section
* Photons — Mass Interaction Coefficient

Ui (E) = Zui(E)




Or in other words...




Interaction in Material

The fractional amount of a beam that
interacts in a differential slice of a
material is given by

[(x) —I(x + Ax)

100 = P(x)
. Pi(Ax) . I(x)—I(x+Ax) 1 di(x)
pe = M —Ar = A, Ax I(x) ~ I(x) dx
dl(x)

o = THil (x) = I(x) = 1(0) exp(—u;x)




Interaction Metrics

Interaction probability in distance x

I
P(x) =1~ % =1 —exp(—px)

Non-interaction probability in distance x

P(x)=1-P(x) = % = exp(—u;x)

Average penetration distance until interaction, or mean-free-

path length (assuming u; # u;(x))
Prob. part

gets to x
o= [Cxpeoix = [ PGSP@a
Prob. part

interacts in dx
= | x exp(— ,ux)udx——=
fo l l Hiz Hi




Conceptual Interpretations

* The linear attenuation coefficient can be thought
of in three ways:

— Probability that a particle interacts in a differential
length of material (does not assume constant u;)

— Inverse of the mean free path of a particle (assumes
constant u;).

— Related to distance at which half of particles have

interacted (x1,2,; = 12_2) (assumes constant u;)

* Analogous to decay constants
— Decay probabilities

— Average lifetimes

— Half lives.




Non-absorbing Particles

* In many cases (scattering, photons, etc.),
Interactions do not eliminate the particles

* The total amount of particles
— Highly complex, calculated with large computations

— Derive a buildup factor, B(x), that correlates complex
behavior with simple expression

I(x) = B(x)I(0) exp(—p;x)

* This is especially common in calculating dose
... (as opposed to total particles).




Microscopic Cross Section

* Probability of interaction is proportional to the
concentration of interaction sites/atoms

pNg
Hi 21’ 0; = Oj 2

e 0; = Microscopic cross section, has units of L2
e N = Number/atom density

e p = Mass density

e N, = Avagadro’'s number

e A = Atomic mass of the medium




Example

« What is the power generation in a 1cm?
section of U%3° fuel, assuming a thermal
neutron flux of 1x10%2 neutrons/cm?-s?

Crom ook O¢ = 5476 N= A2 M=2377

endyx C =\a.l lom’ :quﬂo)"'s“’/”‘f
9 r N n
2 JcoM
2¢=0°N= & v
Power = 2¢O B = 1.206 MW




Microscopic cross section

* The microscopic cross section
— Independent of atomic density

— Based strongly and complexly on particle kinetic
energy

— Play vital roles in nuclear engineering

« Behaviors are empirical!

— (can be conceptually explained but not always
quantitatively predicted by theoretical means)

» Typical unit is barns (1 barn = 1x10-2* cm?)

* 1 barn is approximate physical cross section of a
uranium nucleus.




Mass Interaction Coefficient

* Photons — mass interaction coefficient

— Interaction coefficient (macroscopic) divided
by density

— which depends only weakly on the properties
of the medium (for photons)

b _olN _No
p p A
 Homogeneous mixture properties can be

determined from

Hi Hi
Wi = E Hij = E Njoy;  —= E wj <—)
. . p L \p)
J J J J




Cross sections for each interaction

O, =0,+0,+0,+0; +... total cross section
C,=0,+0;+0,+0,+... absorption cross section
o, =0, +0, scattering cross section
o, =0, +0, total cross section

t = total

e = elastic scattering

| = inelastic scattering

v = radiative capture

f = fission

o= alpha (charged) particle
p = proton (charged) particle




Cross Section Trends

* Most Isotopes

— Cross sections rise as neutron energy
decreases.

— Resonance regions with narrow and rapidly
varying interactions that eventually are not
resolvable

* Light isotopes (A < 25)
» Heavy isotopes (A > 150)
_* Intermediate
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Al Total Neutron Cross Section
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Fe total neutron cross section
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Fe total neutron cross section
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Lead Total Neutron Cross Section
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Fission Cross Sections 23°U

Uranium 235 Fission Cross Section MT = 18
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Fission Cross Sections 23°U
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Fission Cross Sections 23°U
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Fission Cross Sections 23°U
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Fission Cross Sections 23°U
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Cross section over entire range
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Fission Cross Section of 438U
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Fissionable Cross Sections
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