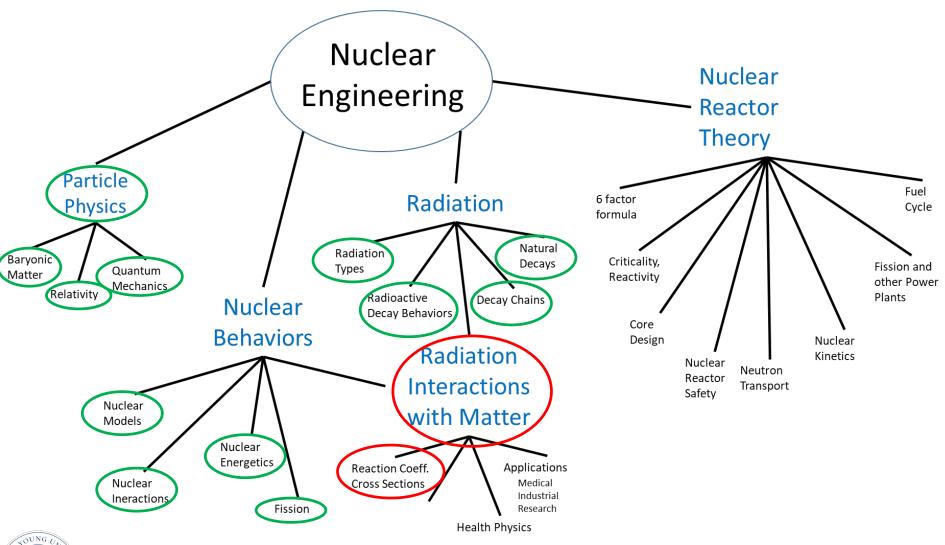
Chemical Engineering 412

Introductory Nuclear Engineering

Lecture 8
Radiation Interactions with Matter
Exam Review


Spiritual Thought

"Most people miss opportunity when it knocks because it comes to the door dressed in overalls and looks like work."

Thomas S. Monson (quoting Thomas Edison)

Roadmap

Objectives

- Be able to calculate probabilities of interaction and radiation field intensities
- Understand both linear interaction coefficients and cross-sections
- Be able to calculate or find μ, σ, and Σ
- Be able to read, understand and take values from cross section libraries: plots or tables
- Know how to calculate reaction rates!!!

Microscopic Cross Section

 Probability of interaction is proportional to the concentration of interaction sites/atoms

$$\mu_i = \sum_i = N\sigma_i = \sigma_i \frac{\rho N_a}{A}$$

- σ_i = microscopic cross section, has units of L²
- N = Number/atom density
- ρ = Mass density
- N_a = Avagadro's number
- A = Atomic mass of the medium

Microscopic cross section

- The microscopic cross section
 - Independent of atomic density
 - Based strongly and complexly on particle kinetic energy
 - Play vital roles in nuclear engineering
- Behaviors are empirical!
 - (can be conceptually explained but not always quantitatively predicted by theoretical means)
- Typical unit is barns (1 barn = 1x10⁻²⁴ cm²)
- 1 barn is approximate physical cross section of a uranium nucleus.

Flux and Reaction Rate

- If σ is probability of one particle interacting with one nucleus
- And Σ is the probability of one particle interacting with many nuclei
- How do we evaluate many particles with many nuclei?
- FLUX- Essentially particle density per time
- Reaction Rate (number of reactions per volume per time)

$$\widehat{R}_i = \emptyset \sum_i = \emptyset N \sigma_i = \emptyset \sigma_i \frac{\rho N_a}{A}$$

Cross sections for each interaction

$$\sigma_t = \sigma_e + \sigma_i + \sigma_\gamma + \sigma_f + \dots$$

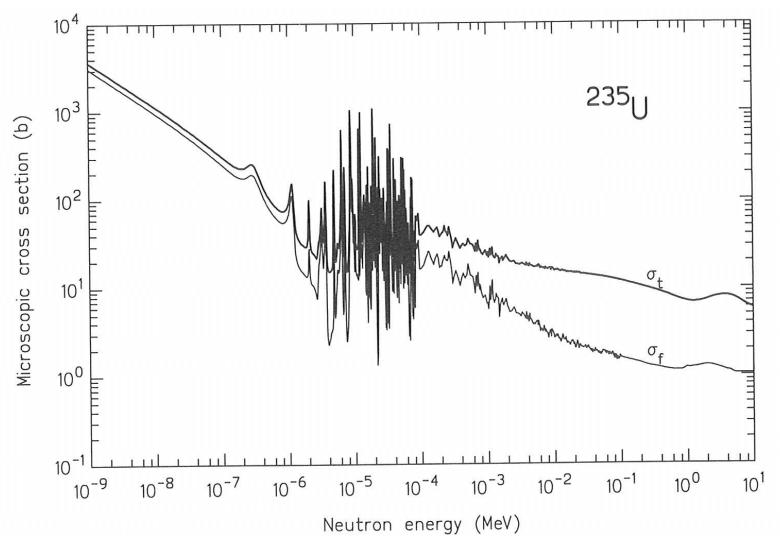
total cross section

$$\sigma_{a} = \sigma_{\gamma} + \sigma_{f} + \sigma_{\alpha} + \sigma_{p} + \dots$$

absorption cross section

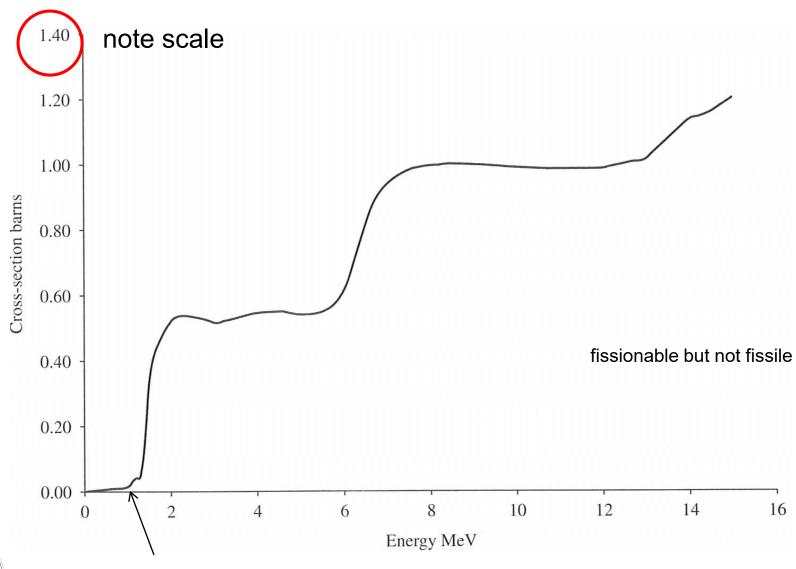
$$\sigma_{\rm s} = \sigma_{\rm e} + \sigma_{\rm i}$$

scattering cross section

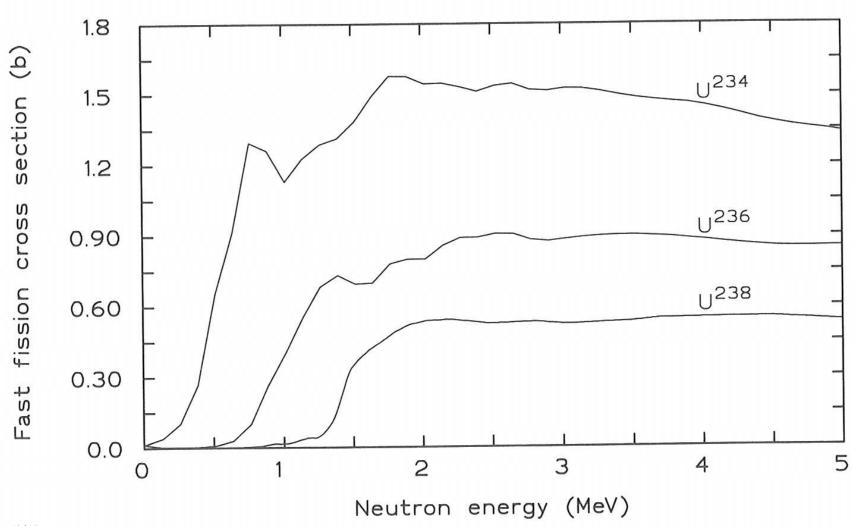

$$\sigma_t = \sigma_s + \sigma_a$$

total cross section

t = total e = elastic scattering i = inelastic scattering γ = radiative capture f = fission α = alpha (charged) particle p = proton (charged) particle



Cross section over entire range


Fission Cross Section of ²³⁸U

threshold energy (> resonance region energy)

Fissionable Cross Sections

Chemical Engineering 412

Introductory Nuclear Engineering

Exam 1 Review

Chapter 1 - Fundamentals

- Nuclear units
- Elementary particles/particle physics
- Isotopic nomenclature
- Atomic weight/number density
- Chart of nuclides
- Mass energy equivalency

Chapter 2 – Quantum Mechanics

- Special Relativity time, length, mass changes
- Relativistic mass/momentum/energy relations
- Particle-wave duality
- Schrödinger's wave equation
- Heisenberg's uncertainty principle

Chapter 3 – Nuclear Models

- Nuclear energy states
- Liquid Drop Model
- Nuclear mass equation
- Shell Model
- Nuclear stability
- Binding energy/mass excess
- Modern Nucleus concepts

Chapter 4 – Nuclear Energetics

- Terminology
- Mass defect/BE
- Nuclear reactions
- Conserved quantities for various situations (not all the same!)
- ****Q-Value**** (know how to calculate for ALL reactions)
 - Know how to deal with charge
 - Know how to deal with excited nuclei
 - Know how to deal with electrons/binding energy of electrons

Chapter 5 – Nuclear Decay

- Conservations
- Decay mechanisms distinguishing features, Q values, energy/momentum balances
- ***Energy Diagrams***
- Alpha/Beta particle energy distribution
- Decay Constant
- Half-Life
- Activity

Chapter 5 – Nuclear Decay (cont)

- Parallel/Series Decay Routes
- Decay Chains
- Solutions to decay chain equations Secular Equilibrium
- Radionuclides in nature
- Carbon 14 dating
- Other isotopic dating methods
- Three component decays
 - Isobars and most stable masses

Chapter 6 – Binary Nuclear Reactions

- Definitions
- Types of binary reactions
- Reaction Mechanisms
- Kinematics (scattering example)
- Threshold Energy
- Neutron Reactions
- Neutron Scattering/slowing
- Neutron Energy Spectrums

Lethargy

Chapter 6 – Binary Nuclear Reactions (cont.)

- Neutron capture vs. slowing
- Fission reactions
- Emitted/recoverable fission energy
- Critical energies for fission
- Fertile vs. fissile vs. fissionable
- Fission product distribution
- Prompt vs. delayed neutrons
- Fission steps/timeline

Chapter 7 – Radiation Interactions with matter

- Linear Interaction Coefficient (micro vs. macro)
- Cross section (micro vs. macro)
- Attenuation in Material
- Derivation of material interaction
- Buildup factor
- Mass Attenuation Coefficient
- Energy dependence of cross sections
 - **Cross section Trends**

Chapter 7 – Radiation Interactions with matter (cont.)

- Cross Section of mixture
- Total intensity/flux
- Neutron flux
- Time/space/position dependence of flux
- Fluence
- Uncollided flux transmission
- Thermal vs. fast neutrons
- Photon Interactions types, trends, energies, cross sections
- Charged Particle interactions
- Stopping Power (collision vs. radiative)
- Range

- The Radionuclide ⁴¹Ar decays by β⁻
 emission to an excited level of ⁴¹K that is
 1.293 MeV above the ground state. What
 is the maximum kinetic energy of the
 emitted β⁻ particle?
- What makes this the maximum energy?

Solution

Q Equation

$$Q_{\beta_{-}} = \{M(^{41}_{18}Ar) - [M(^{41}_{19}K) + E^*/c^2]\}c^2$$
 [40.9645008 - 40.9618259]*931.5 - 1.293 MeV =1.199 MeV

B) Because an antineutrino is also released, which carries away some energy – this maximum is when the antineutrino has zero energy

Assume a fuel rod has a diameter of 1 cm and a length of 5 m. Assuming an enrichment of 5% ²³⁵U and a thermal flux of $2x10^{13}$ neutrons, what is the reaction rate in the fuel rod for:

- a) scattering?
- b) fission?

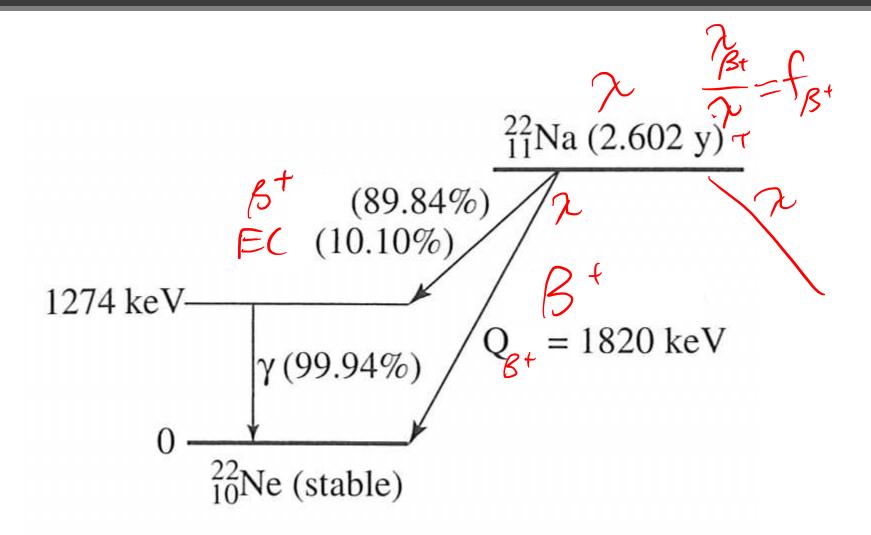
Example 2 key

- $\sigma.s235 = 13.7b$, $\sigma.f235 = 587b$
- $\sigma.s238 = 9.47b$, $\sigma.f238 = 0b$
- $N235 = 2.447E21 \text{ cm}^{-3}$, $N238 = 4.591E22 \text{ cm}^{-3}$
- Vf = 392.7 cm³
- Rs = $3.678E15s^{-1}$
- Rf = $1.128E16s^{-1}$

 What is the probability of producing ⁹¹Br in a fission reaction?

 Use fission product mass distribution chart:

• ~8.5%


• What is the amount of thermal neutrons that are absorbed in water per cm³ over 1 hour in a fission reactor if the thermal flux is $2.2*10^{16}$ neutrons/cm²/s? ($\Sigma_a = 0.0197$ cm⁻¹)

• 1.56*10¹⁸ absorptions per cm³

$$0.t = \overline{D}$$

$$R = 0.5 \text{ or } \overline{D}.5$$

