Chemical Engineering 412

Introductory Nuclear Engineering

Lecture 18 Nuclear Reactor Theory III Neutron Transport

Spiritual Thought

"The healing power of the Lord Jesus Christ—whether it removes our burdens or strengthens us to endure and live with them like the Apostle Paul—is available for every affliction in mortality"

- Elder Dallin H. Oaks

Homework 17 (due 3/26)

Homework 17 Text

Homework #18 Web Problem #8 Back to the Future **GROUP WORK OKAY**, Due 3/26/24 at beginning of class (Don't be afraid to "Google" good assumptions!)

Back to the Future

The flux capacitor is the single greatest invention of our time, but the energy requirements are incredible! 1.21 GW? Seriously?!? Luckily Doc brown had a few jars of plutonium (water shielded of course). Assuming that the water/plutonium ratio in the jar is the same ratio as in the reactor, determine whether there is sufficient plutonium (assume it's pure ²³⁹Pu) for the reactor to be critical. Also, determine the power of such a critical reactor, assuming a max thermal flux of 2¹⁶ neut/cm²/s.

BYU

Reactor Power

Me: Epsilon and p are just one, right?

Heterogeneous Reactor:

General Reactor Equation

Mono-energetic neutrons

$$D\nabla^2 \phi - \Sigma_a \phi + S = -\frac{1}{v} \frac{\partial \phi}{\partial t}$$

For a reactor, $S = v\Sigma_f \phi$
 $D\nabla^2 \phi - \Sigma_a \phi + v\Sigma_f \phi = -\frac{1}{v} \frac{\partial \phi}{\partial t}$
 $\nabla^2 \phi + B^2 \phi = -\frac{1}{Dv} \frac{\partial \phi}{\partial t}$

Bare Slab Reactor Solution

ROUNDED ROUNDED ROUNDED BYU ROUNDED BYU ROUNDED ROUNDED ROUNDED ROUNDED ROUNDED ROUNDED ROUNDED ROUNDED ROUNDED ROUNG CALLER ROUNDED ROUN

The constant A is as yet undetermined and relates Inf to the power. There are different solutions to this no problem for every power level.

Infinite plane indicates no net flux from sides

Bare Slab Reactor Power

Infinite plane indicates no net flux from sides

Spherical Reactor

Spherical Reactor Power

Infinite Cylindrical Reactor

$$\frac{1}{r}\frac{d}{dr}\left(r\frac{d\phi}{dr}\right) = -B^{2}\phi = \frac{d^{2}\phi}{dr^{2}} + \frac{1}{r}\frac{d\phi}{dr}$$

$$\phi(\tilde{R}) = \phi'(0) = 0; |\phi(r)| < \infty$$

$$\frac{d^{2}\phi}{dr^{2}} + \frac{1}{r}\frac{d\phi}{dr} + \left(B^{2} - \frac{m^{2}}{r^{2}}\right)\phi = 0$$

$$\phi(r) = AJ_{0}(Br) + CY_{0}(Br)$$

$$B_{n} = \frac{x_{n}}{\tilde{R}}$$

$$For the second seco$$

BRIGHAN

reactor transport equation

boundary conditions

zero-order (m=0) Bessel equation

general solution involves Bessel functions of first and second kind

flux is finite

Ñ

R

roots of Bessel functions - ϕ is zero at boundary $ilde{R}$

first root

solution (power roduction determines A)

Bessel Functions

Infinite Cylindrical Reactor Power

again, power is proportional to power and highest at center

Finite Cylindrical Reactor

$$\frac{1}{r}\frac{\partial}{\partial r}\left(\frac{\partial \phi}{\partial r}\right) + \frac{\partial^2 \phi}{\partial z^2} = -B^2 \phi \qquad \text{reactor transport equation}$$

$$\phi\left(\tilde{R}, z\right) = \phi'(0, z) = \phi\left(r, \frac{\tilde{H}}{2}\right) = \phi\left(r, -\frac{\tilde{H}}{2}\right) = 0 \qquad \text{boundary conditions}$$

$$\phi\left(r, z\right) = R(r)Z(z) \qquad \text{separation of variables}$$

$$\frac{1}{r}\frac{\partial}{\partial r}\left(\frac{\partial \phi}{\partial r}\right) + \frac{\partial^2 \phi}{\partial z^2} = \frac{Z}{r}\frac{\partial}{\partial r}\left(\frac{\partial R}{\partial r}\right) + R\frac{\partial^2 Z}{\partial z^2}R = -B^2R(r)Z(z)$$

$$\frac{1}{R}\frac{\partial}{\partial r}\left(\frac{\partial R}{\partial r}\right) + \frac{1}{Z}\frac{\partial^2 Z}{\partial z^2}R = -B^2$$

$$\text{since } R \text{ and } Z \text{ vary independently, both portions of the equation must equal (generally different) for the equation must equal (generally different) for the equation as B_R and B_Z , respectively for the equation B_R for the equation B_R and B_Z for the equation B_R and B_Z for the equation B_R for the equation B_R and B_Z for the equation B_R and B_R and B_R for the equation B_R for the equation B_R for the equation B_R and B_R for the equation B_R for the eq$$

Η

 \mathbf{F}

Finite Cylinder Solution

solution is the product of the infinite cylinder and infinite slab solutions Buckling is higher than for either the infinite plane or the infinite cylinder. Buckling generally increases with increasing leakage, and there are more surfaces to leak here than either of the infinite cases.

Neutron Flux Contours

Neutron flux in finite cylindrical reactor

3D contours of neutron flux at high power

3D contours of neutron flux at low power

Bare Reactor Summary

Some details

- Reflected reactors lend themselves less easily to analytical solution – commonly reactors are considered as sphere equivalents rather than trying to solve the equations.
- Reasonable representation for fast neutrons – not for thermal reactors
- Reflector savings in size is typically about the thickness of the extrapolated distance.

Flux Comparisons

Distance from center of reactor

Thermal Flux Variations

General Reactor Equation

Mono-energetic neutrons

$$D\nabla^2 \phi - \Sigma_a \phi + S = -\frac{1}{v} \frac{\partial \phi}{\partial t}$$

For a reactor, $S = v\Sigma_f \phi$
 $D\nabla^2 \phi - \Sigma_a \phi + v\Sigma_f \phi = -\frac{1}{v} \frac{\partial \phi}{\partial t}$
 $\nabla^2 \phi - B^2 \phi = -\frac{1}{Dv} \frac{\partial \phi}{\partial t}$

Multiple Energy Groups

Multi-energetic neutrons? $D\nabla^2 \phi - \Sigma_a \phi + \nu \Sigma_f \phi = -\frac{1}{\nu} \frac{\partial \phi}{\partial t}$

- Source/sink terms change
- Source = fission + scattering from other groups
- Sink = absorption + scattering to other groups
- Fission neutrons only sourcd in top groups
- Fission only in thermal groups