Chemical Engineering 412

Introductory Nuclear Engineering

Lecture 20 Nuclear Reactor Theory V Reactivity Insertions

Spiritual Thought

"In unfair situations, one of our tasks is to trust that all that is unfair about life, can be made right through the atonement of Jesus Christ. Jesus Christ overcame the world and absorbed all unfairness. Because of him, we can have peace in this world and be of good cheer. If we let him, Jesus Christ will consecrate the unfairness for our gain. He will not just console us and restore what was lost; He will use the unfairness for our benefit."

-Dale G. Renlund

Roadmap

Objectives

- Understand, recognize and do calculations relating to feedback coefficients
- Understand reactor "control strategies"
- Understand xenon peak phenomena

Kinetics

- Reactor power is controlled:
 - Control rods add/subtract worth
 - Chemical Shim
 - Burnable Poisons
- The circumstances we've seen so far are not a real, however. Why?
- Nature gets involved:
 - Feedback Mechanisms!

Isotopic Feedbacks (slow)

- Fuel Burnup (slow)
 - Decrease in reactivity
- Fuel breeding (slow)
 - Increase in reactivity
- Fission product poisons (moderate-hours)
 - ¹³⁵Xe and ¹⁴⁹Sm
 - Decrease reactivity until decay away
- Burnable Poisons (slow)
 - Decrease reactivity until transmuted away

Temperature Feedbacks (fast)

- Atomic concentration changes
 - Moderator coolant density
 - Void coefficient fuel expansion
- Neutron energy distribution changes
 - "harden" spectrum with increased T
 - TRIGA reactor is extreme example
- Resonance interaction changes
 - Doppler dominant feedback
- Burnable Poisons
- FUNDED FOUNDED BYU 1875 - ROVO, UT 11
- Geometry changes

Temperature Dependence

$$\alpha_{T} = \frac{d\rho}{dT} = \frac{d}{dT} \left(\frac{k-1}{k}\right) = \frac{1}{k^{2}} \frac{dk}{dT} \cong \frac{1}{k} \frac{dk}{dT}$$

Breit-Wigner describes absorption profile at 0 K but Doppler effect broadens peaks, with • little change in area, at higher temperatures.

BYU

- α_T = temperature reactivity feedback coefficient
- If $\alpha_T > 0$,
 - Unstable
 - increases and decreases in temperature run away to meltdown or shutdown without operator response.
 - If $\alpha_T < 0$,
 - Stable
 - Increases and decreases in temperature self regulate and the reactor stabilizes.
 - Different α 's for fuel/moderator
 - Different timescales
 - Fuel is most rapid
 - α_{prompt}
- NRC requires negative α_{prompt} values for licenses

Feedback Effects

 What if we add \$0.1 to AP1000 core with temperature feedbacks included?

Example 1

A standard US pressurized water reactor (1000 MWe) experiences a transient in which a control rod bank is ejected from the core. This adds 0.1\$ of reactivity. What is the power after 1 minute?

Feedback Types

• Flowering • Coolant

Axial Expansion

Doppler

Radial Expansion

Example 2

Based on the previous AP1000 example, a rod-ejection accident occurs, but assume now an axial expansion feedback coefficient of -0.00001¢/K, a Doppler feedback of -0.01 ¢/K, and a coolant void coefficient of -0.03 ¢/K. How much of a temperature increase occurs before the power level stops increasing?

Exotic Reactors

Xenon (lodine, Tellurium)

Xenon-135 has a high absorption cross section (2.65x10⁶ b in thermal region) and is the most significant absorbing poison.

Cluster Control Rods

Cruciform Control Rods

Fuel Loading Patterns

Burnable (absorbing) poisons

Burnable poison forms products with lower adsorption cross sections, compensating for accumulation of other poisons. Boron and gadolinium oxides (gadolina) are examples.

Typical Control Worths

TABLE 7.7TYPICAL REACTIVITY WORTHS FOR
CONTROL ELEMENTS 3,000 MWT LIGHT-WATER
REACTOR

	PWR	BWR
Excess reactivity at 20°C	\$45	\$38
No Xe or Sm	k = 1.41	k = 1.33
Total control rod worth	\$11	\$26
	~ 60 clusters	140–185 rods
Fixed burnable poisons	\$13	\$18
Chemical shim worth	\$26	—
Net reactivity	-\$5	-\$6

Worldwide Summary

Current Reactors/Power

Total Number of Reactors: 455

Sources: IAEA PRIS Database (update on 2018-09-13) https://www.iaea.org/PRIS/home.aspx World Nuclear Association http://www.world-nuclear.org/information-library/facts-and-figures/reactor-database.aspx

Worldwide Construction

US Power Plants

BYU

96 plants in 31 states operated by 30 utilities with combined capacity and generation of 98.6 GW and 800 GWh, respectively, with average capacity factors slightly over 90%. 5 reactors under construction on 3 sites.

Reactor Classifications

MOX: mixed-oxide containing any combination of U, Pu and Th

FOUNDED BYU

All Reactor Summary Data Taken from the IAEA PRIS Database

Reactor Startup

Laboratories

