Chemical Engineering 412

Introductory Nuclear Engineering

Lecture 22 Nuclear Power Plants II Other Nuclear Systems

Spiritual Thought

D&C 76:22-23

22...this is the testimony, last of all, which we give of him: That he lives!

23 For we saw him, even on the right hand of God; and we heard the voice bearing record that he is the Only Begotten of the Father

Roadmap

POVO, U

Gas-cooled Fast Reactor

 He cooled with direct Brayton cycle for high efficiency

- Closed fuel
 cycle
- Low Power
 Density
- Fuel Rods,
 ²³⁹Pu

Sodium-Cooled Fast Reactor

- Eliminates the need for transuranic (Pu) isotopes from leaving site (by breeding and consuming Pu)
- Liquid sodium cooled reactor
- Fueled by U/Pu alloy
- Fuel Rods (Zr-Pu-U metallic fuel), ²³⁹Pu

Lead-cooled Fast Reactor

- Heat exchanged to gas-driven turbine
- Natural convection core cooling (cannot fail unless gravity fails)
- WEC Choice
- Fuel Rods (Zr-Pu-U metallic fuel), ²³⁹Pu

Fast Reactors - Advantages

- Most transuranics act as fuel
 - Reduces waste toxicity
 - Reduces waste lifetime (dramatically)
- Expand potential fuel -
 - Thermal is primarily odd-numbered actinides (²³⁵U)
 - Fast is all actinides, including ²³⁸U, Th, etc.
 - In waste
 - Depleted uranium
 - Actinides generated in the fuel
- When operated in breeder (as opposed to burner) mode, creates more fissionable fuel than it consumes, extending total available fuel.

Conversion Ratio

- Ratio of Created fuel to burned fuel
 - Breeder reactors 1.01 up to ~1.21
 - Burner reactors ~0.1-0.2
 - Example:
 - In a critical reactor fueled with natural uranium, it is observed that, for every neutron absorbed in 235U, 0.254 neutrons are absorbed in resonances of 238U and 0.640 neutrons are absorbed by 238U at thermal energies. There is essentially no leakage of neutrons from the reactor.
 - What is the conversion ratio?
 - How much 239Pu in kg is produced when 1 kg of 235U is consumed?

Fast Reactors – Disadvantages

- Low response time
 - complicates control!
 - control rods less effective, other means must be used:
 - Fuel thermal expansion
 - Doppler broadening
 - Absorbers
 - Reflectors
- Small cross sections large critical mass
 - Leads to either large cores or high enrichment.
- Sodium and sodium/potassium highly reactive!
 - Lead, salts and gases avoid this problem, but more absorption
- Liquid metals and salts can become radioactive
 - (n, γ) reactions
 - ⁴He avoids this problem (absorption cross section near zero).
 - Potential positive void coefficient of liquids not He.

Waste Challenges

Waste

© 2013 Westinghouse Electric Company LLC. All Rights Reserved.

OUNG

BYU

Molten Salt Reactor

- Low-pressure, hightemperature core cooling fluid
- Fuel either dissolved in salt (typically as UF₄) or dispersed in graphite moderator.
- Perhaps gas-driven (S-CO2) turbine.
- Liquid Fuel, ²³⁵U or ²³³U

Safety

MSR Safety Advantages

- Atmospheric Pressure
- Strong Negative Reactivity Feedback
- Chemically binds to fission products
- High salt boiling point
 ~1500°C
- High structural melting point
 - ~1200 °C to 1500 °C

14

MSR Waste Advantages

1875 ROVO, U 15

Fission Product Removal

MSR Cost Advantages

- Atmospheric
- Utilize ALL fuel
- Less Material
- Less safety systems
- No fuel melting
- More simplicity= lower cost
- Increased safety = lower costs
- Caveat: NRC

licensing unknowns

MSR Weapons advantages

- No Pu-239
- U-233
 - -Contaminated with U-232
 - -High Energy Gammas
 - Human handling
 - Electronics busting

RESEARCH CORP. Molten Salt Microreactor (ARC)

ADVANCED MICRO-NUCLEAR POWER CAN BE THE "MODEL T" SOLUTION FOR CLEAN ENERGY

- Micro-Reactors:
 - Mass produced;
 - Low cost to install and operate;
 - Reduced complexity for licensing.
- Plentiful & widely available.
- Game changer.

Thermoelectric Generators

- Low-efficiency (5-10%) and high cost conversion of heat to electricity.
- Applicable primarily where traditional heat engines, which are more efficient and less costly but bulkier, will not work (space, remote locations, etc.).
- Based on the Seebeck effect, the same principle as a thermocouple, except most commonly use p-n junctions instead of dissimilar metals.
- Connected in series in thermopiles.

Thermoelectric Generators

ceramic

sub strate

Thermocouple (10s of

microvolt/K potential)

heat rejected (-) (+) ceramic heat sink direct current sub strate ceramic substrate generated current conductive metal

heat absorbed

Advantages and Disadvantages

Advantages

- No moving parts (except possibly a fan or pump)
- Works with relatively lowgrade heat (up to 300 °C for consumer use, higher for industrial use).
- Reasonably compact and simple.

Disadvantages

- High cost
- Inefficient Stirling cycles or other heat engines less costly and more efficient
- High source impedance (can only supply small current before source decreases voltage).
- Poor conductivity/heat sink.

Radionuclide Thermoelectric Generators

Use decay heat from radionuclides on hot side and ambient (or space) temperature on cold side.

- ⁹⁰Sr and ¹/₂ -
 - 1 ton total mass (1-2 kg fuel)
 - Common on earth
- ²³⁸Pu and 2-60 kg total
 - (1-8 kg fuel)
 - common in space
 - 2-60 W_e typical output.

GPHS-RTG

GPHS-RTG for many space probes (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, New Horizons) Initial 300 W_e, 4.4 kW_{th}, 6.8% efficient ²³⁸Pu 1 x ½ m 57 kg (5.2 W_e/kg) SiGe elements

GPU components

²³⁸Pu pellet Ir cladding

Graphite Impact Casing

Assembled GPH cell

General Purpose Heat Source

Reactor Thermoelectric Generator

SNAP-10a – K/Na reactor and TE generator – known launch 4/3/1965 in By low-earth orbit – design: 500 W_e for 1 year – satellite (not reactor) failed after 43 days – placed in 4000 year (1300 km) orbit – broke up in 1979

Topaz systems

Soviet BES-5 (US-A/Rorsat satellites) 33-38 known launches – 5 known failures and 16 spurts of NaK-78 – US bought Topaz-II technology for further development

Thermionic Emission

Requires high temperature and detailed construction – 2 known Soviet-designed systems orbited – US bought Topaz-II technology for further development

Advanced Sterling Radioisotope Generator

≥14 year lifetime Nominal power : 140 W_e Mass ~ 20 kg (7 W_e/kg) System efficiency: ~ 30 % 2 General Purpose Heat Source ("Pu238 Bricks") modules Uses 0.8 kg plutonium-238

SAFE

- Safe Affordable Fission Engine (SAFE) are small experimental fission reactors.
- The SAFE-400 reactor produces 400 kW thermal power, giving 100 kW of electricity using a Brayton cycle gas turbine.
- Uranium nitride fuels the reactor in a core of 381 rhenium-clad pins clad with rhenium.
- The reactor is about 50 centimeters (20 in) tall, 30 centimeters (12 in) across and weighs about 512 kilograms (1,129 lb).
- It was developed at the Los Alamos National Laboratory and the Marshall Space Flight Center.

Heat Addition

SAFE Demonstration

Direct Devices

- Not heat engines
- Use radiation directly, called betavoltaic cell
- Low efficiency and low capacity, but relatively maintenance free
- Used in medical and some space research applications

Example

You friend wants to power his private island (96 kW) using 137Cs, and he asks you to make the RTG for him. How much 137Cs is required? Assuming you use enough for 192 kW initially, how long will this power source power his island sufficiently?

