Chemical Engineering 512

Nuclear Reactor Transient Modeling

Lecture 19

Reactor Kinetics

Spiritual Thought

D&C 121:41-42

41 No power or influence can or ought to be maintained by virtue of the priesthood, only by persuasion, by long-suffering, by gentleness and meekness, and by love unfeigned;

42 By kindness, and pure knowledge, which shall greatly enlarge the soul without hypocrisy, and without guile—"

Objectives

- Learn basics of reactor kinetics
- Learn how to input kinetics into RELAP5-3D
- Practice inputting kinetics into RELAP5-3D
- Talk about how to apply this to an existing RELAP5-3D model

Fast Neutron Life Cycle

• What happens to fast neutrons?

Multiplication Factor

$k_{eff} \equiv \frac{neutrons \ at \ point \ in \ cycle}{neutrons \ at \ same \ point \ in \ previous \ generation}$

$$k_{eff} = \frac{n'}{n}$$

$$k_{eff} = \epsilon p \eta f P_{NL}^f P_{NL}^{th}$$

Reactivity and Worth

$$\rho \equiv \frac{k_{eff} - 1}{k_{eff}} = \frac{\delta k}{k_{eff}}$$

reactivity ρ and δk

 $k(\$) \equiv \frac{\rho}{\beta}$ β is delayed neutron fraction worth can be measured in units of k(\$) or k

- cents?
- Percent Mil?

Delayed Neutrons

TABLE 3.5 DELAYED NEUTRON DATA FOR THERMAL FISSION IN ²³⁵U*

Group	Half-Life (sec)	Decay Constant (l_i, \sec^{-1})	Energy (ke V)	Yield, Neutrons per Fission	Fraction (β_i)
1	55.72	0.0124	250	0.00052	0.000215
2	22.72	0.0305	560	0.00346	0.001424
3	6.22	0.111	405	0.00310	0.001274
4	2.30	0.301	450	0.00624	0.002568
5	0.610	1.14		0.00182	0.000748
6	0.230	3.01		0.00066	0.000273
				Total	yield: 0.0158
				Total delayed fraction	on (β) 0.0065

*Based in part on G. R. Keepin, *Physics of Nuclear Kinetics*, Reading, Mass.: Addison-Wesley, 1965.

TOUNG UNIT HERITY

For 1-group model, $T_{\frac{1}{2}}$ for ²³⁵U is about 8.87 s and τ is about 12.8 s.

Simple Kinetics Model

$$\Delta n(t) \equiv \ell_p \frac{dn(t)}{dt} = \left(k_{eff} - 1\right)n(t)$$
$$\frac{dn(t)}{dt} = \frac{k_{eff} - 1}{\ell_p}n(t)$$
$$\Rightarrow n(t) = n(0) \exp\left(\frac{k_{eff} - 1}{\ell_p}t\right)$$

• For ²³⁵U

•
$$\ell_p = 2.1 \times 10^{-4} \text{ s}$$

- $k_{eff} 1 = 0.001$
- and t = 1s,

 $n/n^0 = 117$ (22,027 if $\ell' = 10^{-4}$ as in text) Far too rapid to control!!!

Reactors with delayed neutrons

Delayed neutrons: β is fraction of total neutrons $\overline{\ell}_p = (1 - \beta)\ell_p + \beta(\ell_p + \tau) \approx \ell_p + \beta\tau$ τ is lifetime of delayed neutrons = $\frac{T_{1/2}}{\ln 2} \approx 12.8 s$

 τ is lifetime of delayed neutrons = $\frac{-\tau/2}{\ln 2} \approx 12.8 s$ For $\delta k \ll \beta$

$$\frac{n(t)}{n_0} = \exp\left(\frac{k_{eff} - 1}{\bar{\ell}_p}\right) = \exp\left(\frac{t}{T}\right) \frac{1}{\bar{\ell}_p} = \frac{\beta\tau}{k_{dff} - 1} = \frac{\beta\tau}{\delta k}$$

- For ²³⁵U, T = 83 s, k_{eff} -1 = 0.001,
- $n/n^0 = 1.012$
 - This can be controlled!

Reactivity Equation Solutions

$$T = \frac{\overline{l}}{k_{eff} - 1} = \frac{\overline{l}}{\delta k} = \frac{\beta \tau}{\delta k} =$$

<u>**Reactor period**</u> - The time required for a neutron population to change by a factor of e

$$k_{eff} = 1 + \delta k = 1 + \frac{\beta \tau}{T}$$
 τ =Lifetime of delayed neutrons ~12.8s (U235)

$$T = \frac{\beta\tau}{\delta k} = \frac{\beta\tau}{k_{eff} - 1} = \frac{\beta\tau}{k_{eff}\rho} = \frac{\tau}{k_{eff}\rho(\$)} \approx \frac{\tau}{\rho(\$)}$$

 $\phi(t) = exp\left(\frac{t}{T}\right)$

Remember, Flux is proportional to power....

$$C \cdot P(t) = exp\left(\frac{t}{T}\right)$$
 $\frac{t}{T} = exp\left(\frac{P(t) \cdot C}{P(0) \cdot C}\right)$ $\frac{t}{T} = exp\left(\frac{P(t)}{P(0)}\right)$

Power Changes

$$T = \frac{\beta\tau}{\delta k} = \frac{\beta\tau}{keff \cdot \rho} = \frac{\tau}{keff \cdot k(\$)} \sim \frac{\tau}{k(\$)}$$

- T = Reactor Period (units of time)
 - Time required to increase reactor power (or neutron flux) by 2.72
- Integrate solution with specific values (initial time power to final time/power

$$\frac{t}{T} = ln \left[\frac{P(t)}{P(0)} \right]$$

Temperature Dependence

$$\alpha_{T} = \frac{d\rho}{dT} = \frac{d}{dT} \left(\frac{k-1}{k}\right) = \frac{1}{k^{2}} \frac{dk}{dT} \cong \frac{1}{k} \frac{dk}{dT}$$

Breit-Wigner describes absorption profile at 0 K but Doppler effect broadens peaks, with • little change in area, at higher temperatures.

BYU

- α_T = temperature reactivity feedback coefficient
- If $\alpha_T > 0$,
 - Unstable
 - increases and decreases in temperature run away to meltdown or shutdown without operator response.
 - If $\alpha_T < 0$,
 - Stable
 - Increases and decreases in temperature self regulate and the reactor stabilizes.
 - Different α 's for fuel/moderator
 - Different timescales
 - Fuel is most rapid
 - α_{prompt}
- NRC requires negative α_{prompt} values for licenses

Feedback Types

• Flowering • Coolant

Axial Expansion

Doppler

Radial Expansion

Kinetics Type

Point

- Core-average fluid conditions, weighting factors, feedback coefficients are used
- Power distribution does not change with time
- Can preform quick calculations

Nodal

- Initial conditions calculated by model and are nodalized
- Power distribution is calculated based on time
- Takes much longer to calculate these equations yet leads to more realistic results

Feedback Type

Separable

- Moderator Density
- Moderator Temperature
- Fuel Temperature
- Changes in one of these DO NOT effect the others

Table

- Moderator Density
- Moderator Temperature
- Fuel Temperature
- Changes in these DO
 effect each other

Kinetics RELAP Input Cards

- 3000000 Type Card
- 3000001 Reactor Kinetics Information
- 3000002 Fission Product Decay Information
- 300004NN Power History Data

3000000 – Type Card

- W1(A) Kinetics Type (nodal or point)
- W2(A) Feedback Type

<u>30000001 – Reactor Kinetics Information</u>

- W1(A) Fission product decay type
- W2(R) Total reactor power
- W3(R) Initial reactivity
- W4(R) Delayed neutron fraction over prompt neutron lifetime
- W5(R) Fission product yield factor
- W6(R) ²³⁹U yield factor
- W7(R) Fissions per initial fissile atom
- W8(R) Reactor operating time

W9(R) – Units for W8

- W2(R) Energy release per fission
- W3-W10 As needed based upon W1

300004NN – Power History Data

- W1(R) Reactor power
- W2(R) Time duration
- W3(A) Time duration units
- If not inputted, infinite operation at previously input total reactor power is assumed.

Separable Option

- 300005NN Desnity Reactivity Table
 - W1 Modertor Density
 - W2 Reactivity
- 300006NN Doppler Reactivity Table
 - W1 Fuel Temperature
 - -W2 Reactivity

Example

- Download Lecture 22.i
- Fill in the blanks based upon the following
 - Kinetics Type Separable
 - Delayed Neutron Fraction (β) 0.0056
 - Prompt neutron lifetime 0.000025s
 - Doppler reactivity coefficient ((-0.0000158°F⁻¹)/ β)*(Δ T)
 - Moderator Density Reactivity
 - Convert reactivity to \$
 - Hint: \$ = %/β

Density (lb/ft³)	Reactivity (%)
4.7	-68.5
14.0	-30.0
23.4	-14.1
35.1	-4.8
46.8	0.0
56.2	3.0

Answer

7	*	KineticsType		Feedback	туре				
8	30000000	point		separabl					
9	*	Decay	Power	React	NFrac	YFact	U239		
10	30000001	gamma-ac	3600.e6	0.0	224.0	1.0	0.48		
11	*	Туре							
12	30000002	ans79-1							
13	*	Table/Cont	VarNum						
14	30000011	2							
15	*	Denisty	Reactivi	ity Table)				
16	*	ModeratorD	ModeratorDensity Reactivity						
17	30000501	4.7		-122.3	3				
18	30000502	14.0		-53.6					
19	30000503	23.4		-25.2					
20	30000504	35.1		-8.57					
21	30000505	46.8		0.0					
22	30000506	56.2		5.36					
23	*	* Doppler Reactivity Table							
24	*	Temperatur	e	Reactivity					
25	30000601	200.		5.08					
26	30000602	2000.		0.0					
27	30000603	5000.		-8.46					
28	*								

20

Connecting To a Heat Structure

278	******	*******	******	*****	******	******	******	******	******	******
279	*									*
280	* Heat Structures								*	
281	*									*
282	*******	*******	******	*****	******	******	******	*******	******	******
283	*									
284	*	AxialHS	RadMesh	GeoT	ype SSF	lag Lef	tBound	Reflood		
285	11000000	6	8	2	1	5.7	4	0		
286	*	MeshLoca	tion	MeshF	ormat					
287	11000100	0		1						
288	*	NumOfInt	ervals	Right	Coordina	te				
289	11000101	7		6.5						
290	*	Composit	ionNum	Inter	valNum					
291	11000201	5		7						
292	*		1	Tabaa	llum					
293	110003 1	1000.		7						
294	*	INICIALI	emp	Mesne	JIII Num					
295	11000401	500.		8						
296	*	Boundary	Vol/Tabl	e Inc	r ВСТур	e SACod	e SA/Fa	actor HS	SNum	
297	11000501	15001000	0	0	1	1	10.0	6		
298	*	Boundary	Vol/Tabl	e Inc	r ВСТур	e SACod	e SA/Fa	actor HS	SNum	
299	11000601	0		0	0	1	10.0	6		
300	*	SourceTy	pe Pf		LeftBou	ndMult	RightBo	oundMult	HSNum	L
301	11000701	1000	0.00	1791	0.0		0.0		6	
302	*	WordForm	at							
303	11000800	0								
304	*	HydDiam	HLFor	HLRev	GSLFor	GSLRev	GLCFor	GLCRev	Boil	HSNum
305	11000801	0.0	3.0	3.0	0.0	0.0	0.0	0.0	1.0	6
306	*	WordForm	at							
307	11000900	0								
308	*	HydDiam	HLFor	HLRev	GSLFor	GSLRev	GLCFor	GLCRev	Boil	HSNum
309	11000901	0.0	3.0	3.0	0.0	0.0	0.0	0.0	1.0	6
310	*									

Assignment

• Homework 10 Due 11/14/23

