Chemical Engineering 512

Nuclear Reactor Transient Modeling

Lecture 2 Reactor Concepts RELAP5-3D Introduction Export Control Laws

"To establish Zion in our homes, branches, wards, and stakes, we need to (1) become unified in one heart and one mind; (2) become holy people; and (3) care for the poor and needy. We cannot wait until Zion comes for these things to happen—Zion will come only as they happen."

-Elder D. Todd Christopherson

Objectives

- Go over questions from DVDs
- Learn how to build an input deck
- Build a sample input deck

DVD Questions?

- RELAP Code Overview
- RELAP5-3D Code Overview
- Execution Procedures
- Input Description (Part 1)

Input Deck Information

- Use text editor
 - Really anything, Notepad ++ works well
- Files saved with ".i" extension
- 80 Character Length
- * or \$ to comment
- Must end with a "."

program_deck.agr.jpg

- All lowercase unless in a name
- Do not use TABs
- All input word descriptions can be found in the Appendix

Comment EVERYTHING

0750001	26	
0750101	0.061977823	26
0750301	.076395	1
0750302	.153416	3
0750303	.153314	23
0750304	.153416	25

VS

,	*	name	type	
(0750000	"Ch1Q1"	pipe	* quadrant 1, channel 1 volume properties
1	*	nodes		
(0750001	26		
1	*	FlowArea	vol#	
(0750101	0.061977	7823 2	6 * 2 assemblies *
1	*	Node Length	vol#	
(0750301	.076395	1	
1	*	Node Length	vol#	
(0750302	.153416	3	
1	*	Node Length	vol#	
AYOUNG	0750303	.153314	23	
FOUNDER	U FIRST	Node Length	vol#	
1875 PROVO	0750304	.153416	25	

Custom Language in Notepad ++

- Language \rightarrow User Defined Language \rightarrow Define Your Language
- Create New → Name is whatever you'd like (RELAP)
- Ext. \rightarrow .i
- Comment & Number \rightarrow Comment Line Style \rightarrow Open \rightarrow *
- Comment & Number \rightarrow Comment Style \rightarrow Open \rightarrow *
- Then use styler to choose what choose foreground color (text color)
- Exit
- Language tab \rightarrow Select RELAP
- Now all your comments will be one color and your code will be black

Title Card

• = Title of Deck

Miscellaneous Control Cards (A2-12)

- 100 Problem Type Problem Option
- 101 INP-CHK/RUN
- 102 input units output units
- 105 time remaining 1 time remaining 2 (adv) CPU time allotted
- 110 noncondensable gas
- 120 ref. vol
 elevation
 fluid type
 system name

```
100 new stdy-st
*
102 british si
105 5.0 6.0 5000.0
110 nitrogen
```


Time Step Control Cards (A3-1)

- 201 End Time min time step max time step ssdtt minor major restart
- ssdtt time step options
- Minor*min time step = minor data point every _____ seconds
- Major*min time step = major data point every _____ seconds
- Restart*min time step = generate restart file every _____ seconds

201 10000.0 1.0-7 0.01 07003 100 50000 50000

Hydrodynamic Components

- Single Volume
 Holds liquid or gas
- Single Junction

 Connects two volumes
- Time Dependent Volume
 - Imposes a boundary condition
- Time Dependent Junction
 - Used to supply fluid and specific flow rate

Hydrodynamic Input Numbering

CCCXXNN

- CCC component number
- XX card type
- NN card number within card type

Single Volume (Appendix Page A7-1)

•	Cor	mponent Nan	ne and Type		
	_	CCC0000	name	snglvol	
•	X-C	Coordinate Vo	olume Data		
	—	CCC0101	X-area	X-length	X-volume
	—	CCC0102	X-azim	X-incl	X-∆z
	—	CCC0103	X-roughness	X-D _h	X-tlpvbfe
•	Initi	al Conditions	3		
	—	CCC0200	εbt	initial conditions	
6000	0	ieglin	angluol		
		المتلا بالمراجع المتحالية والمحا	A DELEVATION AND A VALUES		

1060000 isglip snglvol 1060101 28.550 0.0 149.43 0.0 49. 3.958 0.0 6.029 00 1060200 3 2233. 594.14 *

Single Volume (Appendix A7-1)

- Area, Length, and Volume

 Only need 2, leave the other as 0.0
- Azimuthal Angle
 Not used, enter 0.0
- Inclination Angle
 - 0 horizontal
 - 90 vertical upward
 - -90 vertical downward
- Hydraulic diameter
 - Can be computed by hand
 - Input 0 to allow the computer to complete the calculation

Single Volume (Appendix A7-1)

- Volume Control Flags
 - t thermal front tracking
 - mixture level tracking
 - p water packing
 - v vertical stratification
 - b interphase friction
 - f wall friction
 - e equilibrium/non-equilibrium
- If default enter 00 or do not input

ε		
• 0 • 1 • 2 • 3	default fluid H ₂ O D ₂ O H ₂	
b		
• 0 • 1	no boron boron	
t		

- P, u_t, u_g, and α T and X • 0
- 1
- 2 P and X
- 3 P and T
- P,T, and X_e • 4
- 5
- T,X, and X_{nc} P, u_t, u_g, α , and X_{nc} • 6

Single Volume Example

- Component Name and Type
 - CCC0000 name snglvol
- X-Coordinate Volume Data
 - CCC0101X-areaX-lengthX-volume- CCC0102X-azimX-incl $X-\Delta z$
 - CCC0103 X-roughness
- Initial Conditions
 - CCC0200 εbt

initial conditions

X-tlpvbfe

 $X-D_{h}$

Create a single volume named "test" that starts out at a pressure of 3000Pa and 400K. This volume is perfectly smooth, has a downwards inclination of 5° and a change in height of 0.7m. The length of "Test" is 5m and its volume is 25m³. You may assume all flags are set to default. Number this volume 105

Single Volume Results

*Answer			
1050000	test	snglv	ol
1050101	0.0	5	25
1050102	0.0	-5	-0.7
1050103	0.0	0.0	00
1050200	3	3000	400

- Component Name and Type
 - CCC0000 name sngljun
- Geometry
 - CCC0101 from to area
 - CCC0102 A_F A_R jefvcahs
- Initial Conditions
 - CCC0201 vel/mfr liquid vapor interface

×									
1070000	isq	glptu	snglj	jun					
1070101	100	5010000	10800	00000	11.099	0.0	0.0	0100	
1070201	1	9737.	0.0	0.0					
*									

Connections

- CCC000000 inlet of CCC
- CCC010000 outlet of CCC
- Area
 - If 0, minimum adjoining area is used
- Input Conditions
 - Vel/mfr
 - 0 to input velocities
 - 1 to enter mass flow rates

- Junction Control Flags
- e modified PV term in energy equations
 - f CCFL
- v horizontal stratification entrainment
 - c choking

nange

a smooth/abrupt area

- Component Name and Type
 - CCC0000 name sngljun
- Geometry
 - CCC0101 from to area
 - CCC0102 A_F A_R jefvcahs
- Initial Conditions
 - CCC0201 vel/mfr liquid vapor interface

Create a single junction that connects from the outlet of volume 105 to the inlet of 107. Let the computer calculate the minimum area for this connection. You may assume loss coefficients are 0 and there are no flags. Name the junction "test2" and number it 106. Assume there is no gas in the junction and that the initial liquid mass flow rate is 2.11 kg/s.

*Answer				
1060000	test2	sngljun		
1060101	105010000	10700000	0.0	
1060102	0.0	0.0	0000000	
1060201	1	2.11	0.0	0.0

What did we just do?

What is our goal?

Time Dependent Volume (A7-10)

Cor	nponent Nan	ne and Type				
_	CCC0000	name	snglvol			
• X-C	oordinate Vo	olume Data				
-	CCC0101 X-volume	X-area	X-length			
-	CCC0102 X-∆z	X-azim	X-incl			
-	CCC0103 X-tlpvbfe	X-roughness	X-D _h			
Dat	a Control					
-	CCC0200 search varia	ɛbt able	trip #			
-	CCC0201	search variable	data			
* inj						
7500000	injvol tr	ndpvol				
7500101	1000. 1.0	0.0 0.0	0.0 0.0	0.0	0.0	00
7500200	2					
7500201	0.0 2500	. 0.				
*						

Time Dependent Volume (A7-10)

- Same as single volume but card 200 is different
- εbt is same as single volume
- Trip is optional
 Don't worry about this now
- If no search variable is entered, time is used
- Used where fluid is coming into the model at specific conditions

Time Dependent Junction (A7-22)

- Component Name and Type
 - CCC0000 name tmdpjun
- Geometry
 - CCC0101 from to area jefvcahs
- Data Control
 - CCC0200 vel/mfr trip # search variable
 - CCC0201 search variable liquid vapor interface

1810000	mnfee	edl tr	ndpjun		
1810101	18200	00000	1740000	000	0.736
1810200	1	506			
1810201	-1.0	968.25	0.0	0.0	
1810202	0.0	968.25	0.0	0.0	
1810203	20.	968.25	0.0	0.0	
1810204	20.1	0.0	0.0	0.0	

Time Dependent Junction (A7-22)

- Again, much like single junction
- Used to supply fluid as specified flow rate or velocity

Pipe (A7-26)

•	CCC0000	name pi	ipe	
•	CCC0001	number of volumes		1000000 ihll pipe
•	CCC0101	X-area vo	ol #	1000001 2 1000101 5.14 1
•	CCC0301	X-length vol #		1000102 4.587 2
•	CCC0601	X-incl vo	ol #	1000302 4.362 2
•	CCC0801	X-rough X-D _h vo	ol #	1000601 0.0 2 1000801 0.0 2.558 1
•	CCC1001	tlpvbfe vo	ol #	1000802 0.0 2.417 2 1001001 00 2
•	CCC1101	jefvcahs jun #	ŧ	1001101 0000 1 1001201 3 2233, 594,14 0.0 0.0 1
•	CCC1201	εbt initial condition	ons vo	1001202 3 2233. 594.14 0.0 0 0 2
•	CCC1300	vel/mfr		1001301 9737. 0.0 0.0 1
•	CCC1301	liquid vapor inter	rface jun	ı#

Pipe (A7-26)

- Annulus is same just put annulus as type
- Number of junctions
 - Number of volumes 1
- Sequential Expansion Notation
 - 1000101 0.5 5
 - 1000102 0.75 7
 - 1000103 0.5 10

End of Deck Card

DO NOT FORGET THIS CARD!!!!!

Lets Practice!

 Create and input deck for a 2-volume pipe of any size with an initial temperature and pressure of 300K and 100000Pa with the water being stagnant.

 Run the input deck for 10sec and generate a plot of the temperature of the fluid in that volume.

What do we expect to happen? What did happen?

Results

Assignment

- Before next class, watch sections 7 and 11 on DVDs
- Homework 2 is due Tuesday (9/19)

