Chemical Engineering 512

Nuclear Reactor Transient Modeling

Lecture 17

Reactor Kinetics

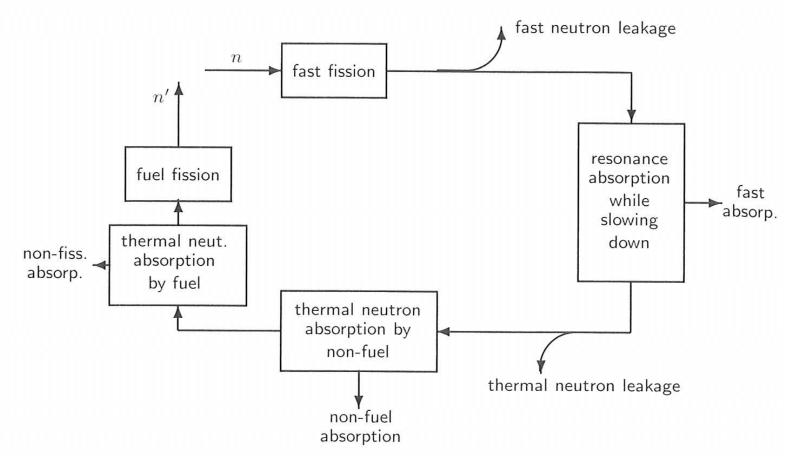
Spiritual Thought

"They knew that they could trust God—even if things didn't turn out the way they hoped. They knew that faith is more than mental assent, more than an acknowledgment that God lives. Faith is total trust in Him.

Faith is believing that although we do not understand all things, He does. Faith is knowing that although our power is limited, His is not. Faith in Jesus Christ consists of complete reliance on Him.

Knowing all this, it was not difficult for those three young Hebrews to make their decision. They would follow God; they would exercise faith in Him. He would deliver them, but if not—and we know the rest of the story."

Dennis E. Simmons


Objectives

- Learn basics of reactor kinetics
- Learn how to input kinetics into RELAP5-3D
- Practice inputting kinetics into RELAP5-3D
- Talk about how to apply this to an existing RELAP5-3D model

Fast Neutron Life Cycle

What happens to fast neutrons?

Multiplication Factor

$$k_{eff} \equiv \frac{neutrons \ at \ point \ in \ cycle}{neutrons \ at \ same \ point \ in \ previous \ generation}$$

$$k_{eff} = \frac{n'}{n}$$

$$k_{eff} = \epsilon p \eta f P_{NL}^f P_{NL}^{th}$$

$$P = \emptyset \sigma_f N_F V_F$$

Reactivity and Worth

$$\rho \equiv \frac{k_{eff}-1}{k_{eff}} = \frac{\delta k}{k_{eff}} \qquad \text{reactivity } \rho \text{ and } \delta k$$

$$k(\$) \equiv \frac{\rho}{\beta}$$
 β is delayed neutron fraction worth can be measured in units of $k(\$)$ or k

- cents?
- Percent Mil?

Delayed Neutrons

TABLE 3.5 DELAYED NEUTRON DATA FOR THERMAL FISSION IN 235 U*

Group	Half-Life (sec)	Decay Constant (l_i, \sec^{-1})	Energy (ke V)	Yield, Neutrons per Fission	Fraction (β_i)
1	55.72	0.0124	250	0.00052	0.000215
2	22.72	0.0305	560	0.00346	0.001424
3	6.22	0.111	405	0.00310	0.001274
4	2.30	0.301	450	0.00624	0.002568
5	0.610	1.14		0.00182	0.000748
6	0.230	3.01		0.00066	0.000273

Total yield: 0.0158

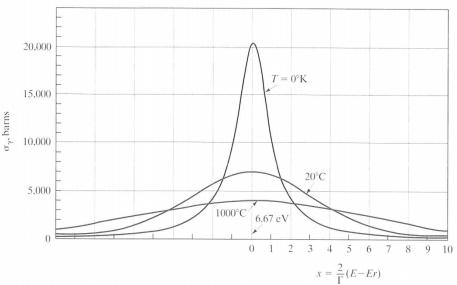
Total delayed fraction (β) 0.0065

For 1-group model, $T_{\frac{1}{2}}$ for ²³⁵U is about 8.87 s and τ is about 12.8 s.

^{*}Based in part on G. R. Keepin, *Physics of Nuclear Kinetics*, Reading, Mass.: Addison-Wesley, 1965.

Power Changes

$$T = \frac{\beta \tau}{\delta k} = \frac{\beta \tau}{keff \cdot \rho} = \frac{\tau}{keff \cdot k(\$)} \sim \frac{\tau}{k(\$)}$$


- T = Reactor Period (units of time)
 - Time required to increase reactor power (or neutron flux) by 2.72
- Integrate solution with specific values (initial time power to final time/power

$$\frac{t}{T} = \ln \left| \frac{P(t)}{P(0)} \right|$$

Temperature Dependence

$$\alpha_T = \frac{d\rho}{dT} = \frac{d}{dT} \left(\frac{k-1}{k} \right) = \frac{1}{k^2} \frac{dk}{dT} \cong \frac{1}{k} \frac{dk}{dT}$$

Breit-Wigner describes absorption profile at 0 K but Doppler effect broadens peaks, with • little change in area, at higher temperatures.

$$\sigma_{\gamma}(E) = \frac{\lambda_r^2 g}{4\pi} \frac{\Gamma_n \Gamma_{\gamma}}{(E - E_r)^2 + \frac{\Gamma^2}{4}}$$

- α_T = temperature reactivity feedback coefficient
- If $\alpha_T > 0$,
 - Unstable
 - increases and decreases in temperature run away to meltdown or shutdown without operator response.
- If $\alpha_T < 0$,
 - Stable
 - Increases and decreases in temperature self regulate and the reactor stabilizes.

Different α 's for fuel/moderator

- Different timescales
 - Fuel is most rapid
 - ullet $lpha_{ extstyle prompt}$
- NRC requires negative α_{prompt} values for licenses

Feedback Types

Flowering

Coolant

Axial Expansion

Doppler

Radial Expansion

Kinetics Type

Point

- Core-average fluid conditions, weighting factors, feedback coefficients are used
- Power distribution does not change with time
- Can preform quick calculations

Nodal

- Initial conditions calculated by model and are nodalized
- Power distribution is calculated based on time
- Takes much longer to calculate these equations yet leads to more realistic results

Feedback Type

Separable

- Moderator Density
- Moderator Temperature
- Fuel Temperature
- Changes in one of these
 DO NOT effect the others

Table

- Moderator Density
- Moderator Temperature
- Fuel Temperature
- Changes in these DO effect each other

Kinetics RELAP Input Cards

- 30000000 Type Card
- 30000001 Reactor Kinetics Information
- 30000002 Fission Product Decay Information
- 300004NN Power History Data

30000000 - Type Card

- W1(A) Kinetics Type (nodal or point)
- W2(A) Feedback Type

3000001 - Reactor Kinetics Information

- W1(A) Fission product decay type
- W2(R) Total reactor power
- W3(R) Initial reactivity
- W4(R) Delayed neutron fraction over prompt neutron lifetime
- W5(R) Fission product yield factor
- W6(R) ²³⁹U yield factor
- W7(R) Fissions per initial fissile atom
- W8(R) Reactor operating time
- W9(R) Units for W8

- W1(A) Fission product type
- W2(R) Energy release per fission
- W3-W10 As needed based upon W1

300004NN – Power History Data

- W1(R) Reactor power
- W2(R) Time duration
- W3(A) Time duration units

 If not inputted, infinite operation at previously input total reactor power is assumed.

Separable Option

- 300005NN Density Reactivity Table
 - W1 Moderator Density
 - W2 Reactivity
- 300006NN Doppler Reactivity Table
 - W1 Fuel Temperature
 - W2 Reactivity

Example

- Download Lecture 22.i
- Fill in the blanks based upon the following
 - Kinetics Type Separable
 - Delayed Neutron Fraction (β) 0.0056
 - Prompt neutron lifetime 0.000025s
 - Doppler reactivity coefficient ((- $0.0000158^{\circ}F^{-1})/\beta$)*(ΔT)
 - Moderator Density Reactivity
 - Convert reactivity to \$
 - Hint: $$ = \%/\beta$

Density (lb/ft³)	Reactivity (%)
4.7	-68.5
14.0	-30.0
23.4	-14.1
35.1	-4.8
46.8	0.0
56.2	3.0

Answer

_									
7	*	KineticsTy	FeedbackType						
8	30000000	point	separabl						
9	*	Decay	Power	React	NFrac	YFact	U239		
10	30000001	gamma-ac	3600.e6	0.0	224.0	1.0	0.48		
11	*	Type							
12	30000002	ans79-1							
13	*	Table/ContVarNum							
14	30000011	2							
15	* Denisty Reactivity Table								
16	*	ModeratorI	ensity	Reactivity					
17	30000501	4.7	-122.3						
18	30000502	14.0	-53.6						
19	30000503	23.4	-25.2						
20	30000504	35.1	-8.57						
21	30000505	46.8	0.0						
22	30000506	56.2		5.36					
23	*	Doppler	Reactivi	ty Table	:				
24	*	Temperatur	Reactivity						
25	30000601	200.	5.08						
26	30000602	2000.		0.0					
27	30000603	5000.		-8.46					
28	*								

Connecting To a Heat Structure

278	*****	*****	*****	*****	*****	*****	*****	*****	*****	*****
279	*									*
280	* Heat Structures *								*	
281	*									*
282	******	*****	*****	*****	*****	*****	*****	*****	*****	*****
283	*									
284	*	AxialHS	RadMesh	GeoT	ype SSF	lag Lef	tBound	Refloo	d	
285	11000000	6	8	2	1	5.7	4	0		
286	*	MeshLoca	tion	MeshF	ormat					
287	11000100	0		1						
288	*	NumOfInt	ervals	Right	Coordina	te				
289	11000101	7		6.5						
290	*	Composit	ionNum	Inter	valNum					
291	11000201	5		7						
292	*	~~~~~~	1	T	um					
293	110003	1000.		7						
294	*	INICIALI	ешр	mesnr	OINC Num					
295	11000401	500.		8						
296	*	Boundary		e Inc	r BCTyp	e SACod		actor	HSNum	
297	11000501	15001000		0	1	1	10.0		6	
298	*	Boundary	Vol/Tabl	e Inc	r BCTyp	e SACod	e SA/Fa	actor	HSNum	
299	11000601	0		0	0	1	10.0		6	
300	*	SourceTy	_		LeftBou	ndMult	RightBo	oundMul		l .
301	11000701	1000		1791	0.0		0.0		6	
302	*	WordForm	at							
303	11000800	0								
304	*	HydDiam					GLCFor			HSNum
305	11000801	0.0		3.0	0.0	0.0	0.0	0.0	1.0	6
306	*	WordForm	at							
307	11000900	0								
308	*	HydDiam					GLCFor			HSNum
309	11000901	0.0	3.0	3.0	0.0	0.0	0.0	0.0	1.0	6
310	*									

Assignment

Homework 9 Due 11/6/25

